毕业设计完整版容器液位调节阀远程控制系统的设计完整详细版(编辑修改稿)内容摘要:

、 70 年代初可编程控制器问世,随着微电子技术、计算机技术和数据通信技术的飞 速发展,以及微处理器的出现, PLC产品朝小型和超小型化方面进行了一次飞跃,最终使早期的 PLC 从最初的逻辑控制、顺序控制,发展成为具有逻辑判断、定时、计数、记忆和算术运算、数据处理、联网通信及 PID 回路调节等功能的现代 PLC。 国际电工委员会( IEC)在其标准中将 PLC 定义为: 可程式逻辑控制器是一种数位运算操作的电子系统,专为在工业环境应用而设计的。 它采用一类可编程的存储器,用其内部存储程序,执行逻辑运算、顺序控制、定时、计数与算数操作等。 面向用户的指令,并通过数字或模拟式输入 /输出控制各种机械或生产过 程。 可程式逻辑控制器及其有关的外部设施,都按易于工业控制系统联成一个整体,易于扩充其功能的原则设计。 b. PLC 国内外状况 世界上公认的第一台 PLC 是 1969 年美国数字设备公司( DEC)研制的。 限于当时的元器件条件及计算机发展水平,早期的 PLC 主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。 20 世纪 70 年代初出容器液位调节阀远程控制系统 的设计 2 现了微处理器。 人们很快将其引入可编程控制器,使 PLC 增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。 为了方便熟悉继电器、接触器系统的工程技术人 员使用,可编程控制器采用和继电器电路图类似的梯形图作为主要编程语言,并将参加运算及处理的计算机存储元件都以继电器命名。 此时的 PLC 为微机技术和继电器常规控制概念相结合的产物。 20世纪 70 年代中末期,可编程控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。 更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、 PID 功能及极高的性价比奠定了它在现代工业中的地位。 20 世纪 80 年代初,可编程控制器在先进工业国家中已获得广泛应用。 这个时期可编程控制器发展的特点是大规模、高速 度、高性能、产品系列化。 这个阶段的另一个特点是世界上生产可编程控制器的国家日益增多,产量日益上升。 这标志着可编程控制器已步入成熟阶段。 20 世纪末期,可编程控制器的发展特点是更加适应于现代工业的需要。 从控制规模上来说,这个时期发展了大型机和超小型机;从控制能力上来说,诞生了各种各样的特殊功能单元,用于压力、温度、转速、位移等各式各样的控制场合;从产品的配套能力来说,生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。 目前,可编程控制器在机械制造、石油化工、冶金钢铁、汽车、轻工业 等领域的应用都得到了长足的发展。 我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。 最初是在引进设备中大量使用了可编程控制器。 接下来在各种企业的生产设备及产品中不断扩大了 PLC 的应用。 目前,我国自己已可以生产中小型可编程控制器。 上海东屋电气有限公司生产的 CF 系列、杭州机床电器厂生产的 DKK 及 D系列、大连组合机床研究所生产的 S系列、苏州电子计算机厂生产的 YZ 系列等多种产品已具备了一定的规模并在工业产品中获得了应用。 此外,无锡华光公司、上海乡岛公司等中外合资企业也是我国比较著名的 PLC 生产厂家。 可 以预期,随着我国现代化进程的深入, PLC 在我国将有更广阔的应用天地。 c. PLC 的应用领域 目前, PLC 在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。 ( 1)开关量的逻辑控制 这是 PLC 最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。 如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。 容器液位调节阀远程控制系统 的设计 3 ( 2)模拟量控制 在工业生产过 程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。 为了使可编程控制器处理模拟量,必须实现模拟量( Analog)和数字量( Digital)之间的 A/D 转换及 D/A 转换。 PLC 厂家都生产配套的 A/D和 D/A 转换模块,使可编程控制器用于模拟量控制。 ( 3)运动控制 PLC 可以用于圆周运动或直线运动的控制。 从控制机构配置来说,早期直接用于开关量 I/O 模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。 如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。 世界上各主要PLC 厂家的产品几乎 都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。 ( 4)过程控制 过程控制是指对温度、压力、流量等模拟量的闭环控制。 作为工业控制计算机, PLC 能编制各种各样的控制算法程序,完成闭环控制。 PID 调节是一般闭环控制系统中用得较多的调节方法。 大中型 PLC 都有 PID 模块,目前许多小型 PLC也具有此功能模块。 PID 处理一般是运行专用的 PID 子程序。 过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。 d. PLC 的展望 21世纪, PLC 会有更大的发展。 从技术上看,计算机技术的新成果会更多地应用于 可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。 目前的计算机集散控制系统 DCS( Distributed Control System)中已有大量的可编程控制器应用。 伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。 PID 的相关知识介绍及其发展趋势 PID 英文全称为 Proportion Integration Differentiation,它是一个数学物理术语。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称 PID 控制,又称 PID 调节。 PID 控制器问世至今已有近 70年历史,它 以其结构简单、稳定性好、工作可靠、调整方便而成为工业控容器液位调节阀远程控制系统 的设计 4 制的主要技术之一。 当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的 其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用 PID 控制技术最为方便。 即当我们不完全了解一个系统和被控对象,或 不能通过有效的测量手段来获得系统参数时,最适合用 PID控制技术。 PID控制,实际中也有 PI和 PD控制。 PID 控制器就是根据系统的误差,利用比例、 积分、微分计算出控制量进行控制的。 目前工业自动化水平已成为衡量各行各业 现代化水平的一个重要标志。 同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。 智能 控制的典型实例是模糊全自动洗衣机等。 自动控制系统可分为开环控制系统和闭环控制系统。 一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接 口。 控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。 不同的控制系统,其传感器、 变送器、执行机构是不一样的。 比如压力控制系统要采用压力传感器。 电加热控制系统的传感器是温度传感器。 目前, PID 控制及其控制器或智能 PID 控制器 (仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的 PID 控制器产品。 本论文研究的意义 过程控制是自动技术的重要应用领域,它是指对液位、温度、流量等过程变量进行控制,在冶金、机械、化工、电力等方面得到了广泛应用。 尤其是液位控制技术在现实生活、生产中发挥了重要作用,比如,民用水塔的供水,如果水位太低,则会影响居民的生活用水;工矿企业的排水与进水,如果排水或进水控制得当与否,关系到车间的生产状况;锅炉汽包液位的控制,如果锅炉内液位过低,会使锅炉过热,可 能发生事故;精流塔液位控制,控制精度与工艺的高低会影响产品的质量与成本等。 在这些生产领域里,基本上都是劳动强度大或者操作有一定危险性的工作性质,极容易出现操作失误,引起事故,造成厂家的的损失。 可见,在实际生产中,液位控制的准确程度和控制效果直接影响到工厂的生产成本、经济效益甚至设备的安全系数。 所以,为了保证安全条件、方便操作,就必须研究开发先进的液位控制方法和策略。 在本设计中以液位控制系统的水箱作为研究对象,水箱的液位为被控制量,选择了出水阀门作为控制系统的执行机构。 针对过程控制试验台中液位控制系统装置的 特点,建立了以组态王模拟界面,西门子 S7300PLC为控制器的 PID液位控制系统。 容器液位调节阀远程控制系统 的设计 5 本论文研究的主要内容 除模拟 PID调节器外,可以采用计算机 PID算法控制。 首先由差压传感器检测出水箱水位;水位实际值通过 PLC进行 A/D转换,变成数字信号后,被输入计算机中;最后,在计算机中,根据水位给定值与实际输出值之差,利用 PID程序算法得到输出值,再将输出值传送到 PLC中,由 PLC将数字信号转换成模拟信号。 最后,由 PLC的输出模拟信号控制电磁阀 ,从而形成一个闭环系统,实现水位的计算机自动控制。 容器液位调节阀远程控制系统 的设计 6 第二章 PID 原理 PID 的原理、算法简介及参数整定 比例( P),积分( I),微分( D)的控制原理 ( 1)比例( P)控制 比例控制是一种最简单的控制方式。 其控制器的输出与输入误差信号成比例关系。 当仅有比例控制时系统输出存在稳态误差( Steadystate error)。 ( 2)积分( I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统( System with Steadystate Error)。 为了消除稳态误差,在控制器中必须引入 “ 积分项 ”。 积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。 这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。 因此,比例 +积分( PI)控制器,可以使系统在进入稳态后无稳态误差。 ( 3)微分( D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。 其原因是由于存在有较大惯性组件(环节)或有滞后( delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。 解决的办法是使抑制误差的作用的变化 “ 超前 ” ,即在误差接近零时,抑制误差的作用就应该是零。 这就是说,在控制器中仅引入 “ 比例 ” 项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是 “ 微分项 ” ,它能预测误差变化的趋势,这样,具有比例 +微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。 所以对有较大惯性或滞后的被控对象,比例 +微分( PD)控制器能改善系统在调节过程中的动态特性。 PID 算法 数字 PID 控制算法 在计算机控制系统中,使用的是数字 PID 控制器,数字 PID 控制算法通常又分为位置式 PID 控制算法和增量式 PID 控制算法。 位置式 PID 控制算法 容器液位调节阀远程。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。