215215石油集团有限责任公司热电厂锅炉烟气脱硫技术改造工程可行性研究报告(优秀可研word版本可下载编)(编辑修改稿)内容摘要:

内外已开发出数百种烟气脱硫技术,而实际进入工业应用较为成熟的技术也不过二十几种,由于脱硫工程是一项技术复杂耗资巨大的环境治理项目,必须因地制宜地探索出技术上可行,经济上合理,具有实际操作性的烟气脱硫改造方案。 在国内火力发电厂应用较普遍,技术较成熟的主要有如下几种:石灰石石膏湿法烟气脱硫、旋转喷雾半干法烟气脱硫、炉内喷钙加尾部增湿活化脱硫、电子束法烟气脱硫、循环流化床半干法烟气脱硫等方法。 根据石油集团有限责任公司热电厂锅炉燃用低硫煤和厂区的具体条件等因素,考虑到技术、经济和实施的可能性(场地),本报告选择如下两种干法脱硫工艺作为改造方案进行研究。 方案一:循环流化床半干法脱硫工艺,方案二:炉内喷钙加尾部增湿活化脱硫工艺。 1 循环流化床半干法脱硫工艺 (方案一) 1)技术原理循环流化床半干法脱硫工艺,采用气悬浮吸收法(GSA)。 又称为《气固循环一体化烟气脱硫系统》,该系统吸收剂浆液和烟气均从反应塔下部进入,吸收剂在烟气中呈悬浮状态,干燥之后的含尘烟气,脱硫产物和未反应物进入旋风分离器,大部分固体颗粒被分离出来返回吸收塔,形成循环流化床的运行工况,大大提高了反应强度。 而一部分粉尘被分离出来,起到预除尘效果。 减少了进入静电除尘器烟尘总量,改进了整个系统的除尘性能,与此同时起到脱硫的效果。 该技术是利用循环流化床强烈的传热和传质特性,在吸收塔内加入石灰等脱硫剂,用高速气流使脱硫剂流态化从而与烟气强烈混合接触,烟气中的酸性污染物与脱硫剂中和、固化从而达到净化烟气的目的。 对降低烟囱对空放排污染物浓度,具有重要作用。 2)工艺流程该系统工艺流程如图所示:气固循环一体化烟气脱硫工艺装置,由五个主要部分构成:(1) 石灰储存及浆液制备系统通过专门设计的螺旋输送机将石灰按比例要求送入熟化罐进行熟化,制成熟石灰浆液,供脱硫塔脱硫使用。 其化学反应为: CaO+H2O→Ca(OH)2(2) 反应塔系统烟气与熟石灰浆和由旋风分离器返回的固体物质进行混合,在强紊流条件下,所含酸性气体与脱硫剂反应。 其化学反应为: Ca(OH) 2 +SO2→CaSO3 + H 2O CaSO3 + 1/2O2 →CaSO 4(3) 灰循环系统旋风分离器将烟气中的气固混合物进行分离,下落的灰粒经专门的灰循环机将绝大部分干态固体物质返回反应塔,这样可以充分利用吸收剂,实现石灰用量最小化,提高了吸收效率,同时又可将一部分固体颗粒分离下来,大大减少后置除尘器的负荷,提高整个系统的除尘效率。 (4)除尘系统 用后置除尘器去除烟气中的飞灰、反应产生物及未反应物等固体颗粒。 由于有前置旋风分离器和固粒控制机控制,使进入后置除尘器的粉尘量一般不超过10g/Nm3,即可提高静电除尘器的效率。 (5)烟气再循环系统将净化后的部分烟气通过再循环烟气管道返回反应塔入口,起到控制反应内气流速度的作用,保持反应器流化床床层连续工作,以适应锅炉负荷的变化。 2 炉内喷钙加尾部增湿活化脱硫工艺 (方案二)1) 技术原理该项技术主要工艺原理包括两部分内容:(1) 炉内喷射钙基吸着剂脱硫;(2)锅炉尾部分级增湿水合脱硫;钙基吸着剂(石灰石)喷入炉内将发生化学反应: CaCO3 → CaO + CO2 CaO +SO2 + 1/2O2 → CaSO 4作为脱硫剂的石灰石粉(CaCO3)在炉膛烟温9001200℃的区域内喷入,CaCO3 受热分解成CaO与CO2 ,此时的CaO 固硫效果最佳。 炉内脱硫率与煤种、石灰石粉料特性、炉型及空气动力场、温度场等特性有关。 在炉内尚未反应的CaO随烟气流至尾部增湿水合反应器,在水合反应器中,烟气携带的CaO 与喷入的水雾接触,生成离子状态的Ca(OH)2 ,并进一步与烟气中SO2反应生成CaSO 4 ,其反应式如下: CaO + H2O→ Ca(OH) 2 Ca(OH) 2 + SO2 + 1/2O2→CaSO 4 +H2O在增湿水合器内Ca(OH) 2 与CO2 的反应较容易,增湿水合器内脱硫率与其出口烟温、露点温差(比温度差)大小有关。 因此增加水量,降低温差以及适当的水滴粒径分布,可有效地提高增湿水合器的脱硫效率。 2) 工艺流程脱硫所需石灰石粉由罐车运至主粉仓前,用自备的高压泵将粉料打入主粉仓,通过给料机将石灰石粉送至输送管道由高压风喷入炉膛,与煤混合进行燃烧,在此过程中脱掉部分SO2。 燃烧后产生的烟气由锅炉尾部排出,进入增湿水合器,烟气中携带的未发生反应的CaO经喷水雾化进一步反应,从而脱掉烟气中剩余的SO2。 烟气经静电除尘器净化除尘后,由引风机通过烟囱排入大气,完成脱硫除尘的整个过程。 工艺流程图如下:5 方案比较方案一:循环流化床半干法脱硫工艺被认为是一项前景广阔的技术,脱硫效率高,吸收剂利用率高,耗水量小,耗电量少,副产品干态易于处理,对烟气负荷变化的适应性好,操作简单,运行可靠,无结垢堵塞等现象发生,占地面积小,投资费用仅为石灰石石膏法的70%以下,运行费用也略低,具有优越的性价比,特别适用于现有已建成的电厂烟气系统技术改造。 该方案所述脱硫装置在世界各国有几十台机组使用,我国云南小龙潭电厂6号机组采用该技术脱硫已经投入运行,效果良好。 方案二:炉内喷钙尾部增湿烟气脱硫装置,该套脱硫装置具有初投资低,工艺简单,运行成本低等优势,其最大的缺点是脱硫效率较低(仅约70%),而且对锅炉有不利的影响,有引起炉内结焦、受热面磨损的潜在威胁。 另外,需在已有的锅炉主厂房内增装体积较大的石灰石粉仓,改造难度较大。 此种脱硫系统在国内也有许多电厂使用,但只局限于在新建的容量较小的机组上采用。 通过对两种方案的比较,并结合石油集团有限责任公司热电厂的具体情况,我们认为方案一:循环流化床半干法脱硫装置更适合我们的该造项目,因此,我们推荐该方案作为重点研究对象,以下将对此方案进行详细论述。 五 GSA 系统的技术特点气悬浮吸收法(GSA)的突出特点是反应塔内的流化状态,反应塔流化床的平均烟气浓度高,固体颗粒的平均浓度为传统的喷雾干燥法的数十倍至上百倍,因而反应塔运行效率高,反应塔内的颗粒物质包括来自污染的飞灰、未反应的石灰石和反应后的副产品经循环反应,最大程度的利用了吸收剂,节省了吸收剂的用量。 其主要特点表现在如下几个方面:1)反应塔内更有效地蒸发冷却在反应塔内,冷却水的汽化降低了上行的烟气的温度,在文丘里段的强紊流条件下,浆液与固粒碰撞,使得颗粒表面形成薄液膜,这一过程又促进了快速蒸发。 与传统的喷雾干燥法相比,烟气的停留时间缩短到1/41/5,而其副产品的含水量小于1%,使短时间内得到干态副产品成为可能。 2)反应条件好、吸收剂利用率高反应塔的流化状态有利于吸收反应的进行,95%以上的吸收剂循环使用,最大程度的利用了吸收剂。 3)更接近绝热饱和温度正如上所述,GSA排出的副产品的含水量小于1%,这使得除尘系统可以在更接近烟气绝热和饱和温度的条件下运行,以达到更高的脱硫效率,而且可以避免系统部件的固体颗粒堆积、结垢等问题。 4)反应塔的高效运行GSA的固有优势在于靠反应塔内高浓度的固体颗粒的流化状态来实现化学反应要求的热量和质量的高效传递,因此塔体小,而效率高。 5)高效去除酸性气体由于GSA可以在较低的气体温度下运行,这使得系统可以取得较高的酸性气体去除效率。 业绩证明了GSA可达到9095%的脱硫和9598%的脱HCl效率。 若操作人员要降低石灰耗量或增加酸性气体吸收效率,可以通过控制气体温度或吸收剂供给速率来实现。 除了去酸性气体,该工艺还能有效的去除二恶英和汞等重金属元素。 6)最优的固粒去除效率GSA的流化床技术使得亚微米颗粒高度凝结成相当粗糙颗粒物质,使得旋风分离器的除尘效率很高,不需要在反应塔前加装预除尘器,而且减少了进入位于旋风分离器之后的静电除尘的粉尘量,因而提高了系统的除尘效率。 7)采用烟气再循环保证运行的可靠性运行中将引风机出口的烟气返回一部分到反应器入口,这样可有效保证锅炉低负荷运行时,GSA系统在最佳效率状态下运行,即适应锅炉负荷的变化又保证了较高的脱硫效率。 8)运行操作简单检修维护方便运行过程中,喷射枪拆装简便,一个人即可完成,用特殊设计的装卸工具使拆换时间只需几分钟,不会影响系统的正常运行,拆卸下来的喷射枪可在方便的时间进行清洗和维修。 9)占地面积小适合。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。