八年级数学轴对称图形多页练习(编辑修改稿)内容摘要:

段的直线叫做这条线段的垂直平分线,也叫做中垂线。 ( 2) 线段垂直平分线上的点到线段两端的距离相等;到线段两端距离相等的点在这条线段的垂直平分线上。 ( 3) 三角形的三条垂直平分线相交于一点,这一点叫三角形的外心(三角形外接圆的圆心),它的位置可能在三角形的内部、外部或边上,它到三角形三个顶点的距离相等。 2.角的平分线: ( 1)角平分线上的点到角两边的距离相等;到角两边距离相等的点在这个角的平分线上。 ( 2)三角形的三条角平分线相交于一点,这一点叫三角形的内心(三角形内接圆的圆心),它到三角形三条边的距离相等。 二、基本图形: ABC 中, DE 垂直平分 AC,则三角形 BCD 的周长等于 变形 :三角形 ABC 中, DF、 EG 分别垂直平分 AB 和 AC,则三角形 AFG 的周长等于 DEC∠ 中找一点 P,使点 P 到 DEC∠ 两边的距离相等,并且到 M、 N 两点的距离也相等。 C E B D A B C D E F G A 中考网 中考网 P,使点 P 到三条直线的距离相等。 三、典型例题剖析: 1.如图,在 △ ABC 中, ∠ C=90176。 , BD 是 ∠ ABC 的平分线, DE⊥ AB, CD=5cm, 则 DE 的长是。 2. 如图,△ ABC 中, DE 是 AC 的垂直平分线,若 AC=6, △ ABD 的周长是 13,则 △ ABC 的周长是 ;若 △ ABC 的周长 是 30, △ ABD 的周长是 25,则 AC=。 若 ∠ C=30176。 ,则 ∠ ADB= 3. ( 20xx 泰州市 3 分) 如图 ,在 10 10 的正方形网格纸中 ,线段 AB、 CD 的长均等于 5.则图中到 AB 和 CD 所在直线的距离相等的网格点的个数有 A. 2 个 B. 3 个 C. 4 个 D. 5 个 E D C M N A B C A D C B 第 3 题图 中考网 中考网 考点 4:等腰三角形 一、考点讲解: 1.等腰三角形: ( 1)定义:有两条边相等的三角形是等腰三角形。 ( 2)性质:两条腰相等; 两个底角相等; 三线合一:底边上的中线、底边上的高和顶角的平分线互相重合。 ( 3)判定: 两条边相等的三角形是等腰三角形。 等角对等边 2.等边三角形: ( 1)定义:三条边相等的三角形是等边三角形。 ( 2)性质:三条边相等;三个角都是 60 度。 ( 3)判定:三条边都相等的 三角形是等边三角形; 三个角都相等的三角形是等边三角形; 有一个角是 60 度的等腰三角形是等边三角形。 3.直角三角形: ( 1)定义:有一个角是直角的三角形是直角三角形。 ( 2)性质:两个锐角互余; 两条直角边的平方和等于斜边的平方; 特殊:斜边上的中线等于斜边的一半; 30 度所对的直角边等于斜边的一半; ( 3)判定:有一个角是直角的三角形是直角三角形; 如果三角形两条边的平方和等于第三条边 的平方,那么这个三角形是直角三角形 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 (说明: 直角三角形 本节只是简单说明,没有选择相关的练习。 ) 二、基本图形: 1. 等腰三角形一腰上的高与底边的夹角与顶角的关系。 变形:等腰三角形一腰上的高与另一腰的夹角与顶角的关系。 2.在三角形 ABC 中, AB=AC,点 P 是 BC 边上的任意一点, PM⊥ AB,PN⊥ AC,垂足分别为 M、 N,BD 是 AC 边上的高,则 PM+PN=。 中考网 中考网 变形 1: 矩形 ABCD 中, PM⊥ BD, PN⊥ AC,若 AB=3, BC=4,则 PM+PN= 变形 2: 正方形 ABCD 中, AB=2, BC=BE, PM⊥ BD, PN⊥ BC,则 PM+PN= 3. △ ABC 中, BD 平分 ∠ ABC, DE∥ BC,则△ BDE 是 三角形。 变形 1: BD、 CD 分别平分 ∠ ABC 和∠ ACB, MN∥ BC,则 BM+CN= 变形 2: BD、 CD 分别平分 ∠ ABC 和∠ ACB 的外角, MN∥ BC,则 BMCN= 变形 3: BD、 CD 分别平分 ∠ ABC 的外角和∠ ACB 的外角, MN∥ BC,则 BM+CN= 三、典型例题剖析: 1. ( 20xx 淮安市 3 分 ) 若等腰三角形底角为 72176。 ,则顶角为 ( ) A. 108176。 B. 72176。 C. 54176。 D. 36176。 变形: 若等腰三角形 一个 角为 72176。 ,则顶角为。 若等腰三角形的一个角是另一个角的 2 倍少 10176。 ,则顶角为。 若等腰三角形的两条边长分别是 6,则周长是。 2. (20xx 日照 3 分 )如图,在 △ ABC 中, AB=AC, D 为 AC 边上一点,且 BD=BC=AD, 则 ∠ A 等于 ( A) 30o( B) 36o ( C) 45o ( D) 72o 3.( 20xx 扬州市 10 分) 如图 , △ ABC 中 , D、 E 分别是 AC、 AB 上的点 , BD 与 CE 交于点O. 给出下列三个条件: ①∠ EBO= ∠ DCO; ②∠ BEO= ∠ CDO; ③ BE= CD. ⑴ 上述三个条件中 , 哪 两个条件 . . . . 可判定 △ ABC 是等腰三角形 (用序号写出所有情形 ); ⑵ 选择第 ⑴ 小题中的一种情形 , 证明 △ ABC 是 等腰三角形 . M N B C D A M N B C D P P M N P A B C D E A 中考网 中考网。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。