高三数学模拟测试试题与答案(编辑修改稿)内容摘要:

A B C D A1 B1 C1 F E D1 4 21.(本题满分 16 分)本题共有 3 个小题,第 1 小题满分 6 分,第 2 小题满分 4 分 ,第 3 小题满分 6 分 . 如图,椭圆 C : 22 1( 0 )xy abab   , 1A 、 2A 为 椭圆 C 的左、右顶点. ( Ⅰ )设 1F 为椭圆 C 的左焦点,证明:当且仅当 椭圆 C 上的点 P 在椭圆的 左、右顶点 时 || 1PF 取得最小值与最大值 ; ( Ⅱ )若椭圆 C 上的点到焦点距离的最大值为 3 ,最小值为 1. 求椭圆 C 的标准方程; ( III)若直线 :l y kx m与( Ⅱ )中所述椭圆 C 相交于 A , B 两点( AB, 不是左右顶点),且满足 22 BAAA  ,求证:直线 l 过定点,并求出该定点的坐标. : 解:( Ⅰ )设 2221 )(||)( ycxPFxf 222222 2 abccxxac  对称轴方程cax 2,由题意, aca  2恒成立, )(xf 在区间 ],[ aa 上单调递增 ∴当且仅当 椭圆 C 上的点 P 在椭圆的 左、右顶点 时 || 1PF 取得最小值与最大值 ; ( Ⅱ )由已知与( Ⅰ )得: 3ac, 1ac, 2a, 1c , 2 2 2 3b a c   . 椭圆的标 准方程为 22143xy. ( III) 设 11()Ax y, , 22()B x y, , 联立 22y kx mxy , 得2 2 2( 3 4 ) 8 4( 3 ) 0k x m k x m    , y P A1 F1 O F2 A2 x 5 2 2 2 2 2 212 2212 264 16 ( 3 4 ) ( 3 ) 0 3 4 08344( 3 ) .34m k k m k mmkxxkmxxk              , 即 , 则, 又 22221 2 1 2 1 2 1 2 23 ( 4 )( ) ( ) ( ) 34mky y k x m k x m k x x m k x x m k        , 因为椭圆的右顶点为 (20)D, , 1AD BDkk  ,即 12 122yyxx  , 1 2 1 2 1 22( ) 4 0y y x x x x     , 2 2 22 2 23 ( 4 ) 4 ( 3 ) 1 6 403 4 3 4 3 4m k m m kk k k      , 229 16 4 0m m k k   . 解得: 1 2mk ,2 27km ,且均满足 223 4。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。