外文翻译--关于农业废料作为潜在的螯合吸附剂从水溶液中吸附重金属离子的研究(编辑修改稿)内容摘要:

–43. [24]Fahim, ., Barsoum, ., Eid, ., Khalil, ., 2020. Removal of Cr (III) from tannery wastewater using activated carbon from sugar industrial waste. J. Hazard. Mater. 136, 303–309. [25]Farajzadeh, ., Monji, ., 2020. Adsorption characteristics of wheat bran towards heavy metal cations. Sep. Purif. Technol. 38, 197–207. [26]Friberg, L., Elinder, ., 1985. Encyclopedia of Occupational Health,third ed. International Labor Organization, Geneva. Friedman, M., Waiss, ., 1972. Mercury uptake by selected agricultural products and byproducts. Environ. Sci. Technol. 6, 457–458. [27]Gajghate, ., Saxena, ., Vittal, M., 1991. Removal of lead from aqueous solution by activated carbon. Ind. J. Environ. Health 33, 374–379. [28]GardeaTorresdey, ., Tiemann, ., Armendariz, V., BessOberto, L.,Chianelli, ., Rios, J., Parsons, ., Gamez, G., 2020. Characterization of chromium (VI) binding and reduction to chromium (III) by the agricultural byproduct of Avena monida (oat) biomass. J. Hazard. Mater. B80, 175–188. [29]GardeaTorresdey, ., Gonzalez, ., Tiemann, ., Rodriguez, O.,Gamez, G., 1998. Phytofilteration of hazardous cadmium, chromium, lead, and zinc ions by biomass of Medicago sativa (alfalfa). J. Hazard. Mater. 57, 29–39. [30]GardeaTorresdey, ., Hejazi, M., Tiemann, ., Parsons, .,DuarteGardea, M., Henning, J., 2020. Use of Hop (Humulus lupulus)agricultural byproducts for the reduction of aqueous lead (II)environmental health hazards. J. Hazard. Mater. 91, 95–112. 10 [31]Garg, ., Kaur, ., Garg, ., Sud, D., 2020. Removal of hexavalent Cr from aqueous solutions by agricultural waste biomass. J. Hazard. Mater. 140, 60–68. [32]Garg, ., Kaur, ., Garg, ., Sud, D., in press. Removal of Ni (II)from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Biores. Technol. Garg, ., Gupta, R., Kumar, R., Gupta, ., 2020. Adsorption of chromium from aqueous solution on treated sawdust. Biores. Technol. 92, 79–81. [33]Gupta, ., Ali, I., 2020. Utilization of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Separation and Purification Technol. 18, 131–140. [34]Gupta, ., Ali, I., 2020. Removal of lead and chromium from wastewater using bagasse fly ash – a sugar industry waste. J. Colloid Interface Sci. 271, 321–328. [35]Gupta, ., Jain, ., Ali, I., Sharma, M., Saini, ., 2020. Removal of cadmium and nickel from wastewater using bagasse fly ash a sugar industry waste. Water Search 37, 4038–4044. [36]Gupta, ., Mohan, D., Sharma, S., Park, ., 1999. Removal of Cr VI from electroplating industry wastewater using bagasse fly ash. The Environmentalist 19, 129–136. [37]Hanif, ., Nadeem, R., Zafar, ., Akhtar, K., Bhatti, ., 2020. Nickel (II) biosorption by Casia fistula biomass. J. Hazard. Mater. B139, 345–355. [38]Hashem, A., AbdelHalim, ., ElTahlawy, ., Hebeish, A., of adsorption of Co (II) and Ni (II) ions onto peanut hulls though esterification using citric acid. Adsorp. Sci. Technol. 23,367–380. [39]Hashem, A., Akasha, ., Ghith, A., Hussein, ., 2020b. Adsorbent based on agricultural wastes for heavy metal and dye removal: Edu. Sci. Technol. 19, 69–86. [40]Hashem, A., AbouOkeil, A., ElShafie, A., ElSakhawy, M., of highcellulose pulp extracted from sunflower stalks for removal of Hg (II) from aqueous solution. . Technol. Eng. 45, 135–141. [41]Hashem, A., Aly, ., Aly, ., Hebeish, A., 2020b. Quaternization of cotton stalks and palm tree particles for removal of acid dye from aqueous solutions. . Technol. , 389–394. [42]Haung, C., Haung, ., 1996. Application of Aspergillus oryzae and Rhizopus oryzae for Cu (II) removal. Water Res. 9, 1985–1990. [43]Ho, ., Mckay, G., 1998. The kiics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 76,822–827. [44]Ho, Y., Huang, ., Haung, ., 2020. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem. 37, 1421–, T., Nakajima, A., Sakaguchi, T., 1981. Studies on the accumulation of heavy metal elements in biological systems, XIX:accumulation of uranium by microorganisms. Eur. J. Appl. . 12, 90–96. [45]Hosea, M., Greene, B., McPherson, R., Henzl, M., Alexander, ., Darnall, ., 1986. Accumulation of elemental gold on alga Chlorella vulgaris. Inorg. Chim. Acta 123, 161–165. [46]Iqbal, M., Saeed, A., Akhtar, N., 2020. Petiolar felt sheet of palm: a new 11 biosorbent for the removal of heavy metals from contaminated water. Biores. Technol. 81, 151–153. [47]Iqbal, M., Saeed, A., Akhtar, N., 2020. Removal and recovery of lead II from single and multiple (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J. Hazard. Mater. 117, 65–73. [48]Johns, ., Marshall, ., Toles, ., 1998. Agricultural byproducts as granular activated carbons for adsorbing dissolved metals and organics. J. Chem. Technol. Biotechnol. 71, 131–140. [49]Kadirvelu, K., Namasivayam, C., Thamaraiselve, K., 2020. Removal of heavy metal from industrial wastewaters by adsorption on to activated carbon prepared from an agricultural solid waste. Biores. Technol. 76,63–65. [50]Kamble, ., Patil, ., 2020. Removal of heavy metals from waste water of thermal power station by waterhyacinths. Ind. J. Environ. Protect. 21, 623–626. [51]Kannan, N., Rengasamy, G., 2020. Comparison of Cd adsorption on various activated carbon. Water Air Soil Pollut. 163, 185–201. [52]Karthikeyan, T., Rajgopal, S., Miranda, ., 2020. Cr (VI) adsorption from aqueous solution by Hevea brasilinesis saw dust activated carbon. J. Hazard. Mater. 124, 192–199. [53]Karnitz Jr., O., Gurgel, ., Melo, ., Botaro, ., Melo, .,Gil, ., Gil, ., 2020. Adsorption of heavy metal ion fromaqueous single metal solution by chemical。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。