外文翻译---供热站温度压力实时检测(编辑修改稿)内容摘要:

mixed in different ratios. A specific Pt/Rh ratio is used because it leads to more stable and reproducible measurements. Types S and R have an upper temperature limit of +1200 oC in oxidizing atmospheres, assuming a wire diameter of . Type B thermocouples have a different Pt/Rh ratio than Type S and R. It has an upper temperature limit of +1750 oC in oxidizing atmospheres. Due to an increased amount of rhodium content, type B thermocouples are no quite so stable as either the Type R or Type S. Types E, J, K, T, and N are basemetal thermocouples that are used for sensing lower temperatures. They cannot be used for sensing high temperatures because of their relatively low melting point and slower failure due to oxidation. Type B thermocouples have a different Pt/Rh ratio than Type S and R. It has an upper temperature limit of +1750 oC in oxidizing atmospheres. Due to an increased amount of rhodium content, type B thermocouples are no quite so stable as either the Type R or Type S. we will look into some differences between different basemetal thermocouples. Type E (NiCr/CuNi) thermocouples have an operating temperature range from 250 oC to +800 oC. Their use is less widespread than other basemetal 5 thermocouples due to its low operating temperature. However, measurements made by a Type E have a smaller margin of error. 1000 hours of operation in air of a Type E thermocouple at +760 oC, having 3mm wires, shold not lead to a change in EMF equivalent to more than +1 oC. Type J (Fe/CuNi) thermocouples are widely used in industry due to their high thermopower and low cost. This type of thermocouple has an operating temperature range from 0 oC to +760 oC. Links to Related Lessons Temperature Sensors Thermistors Thermocouples LM35s Other Sensors Strain Gages Temperature Sensor Laboratories Return to Table of Contents Experiments With Temperature Sensors Data Gathering Measuring temperature is the most mon measurement task. There are numerous devices available for measuring temperature. Many of them are built using one of these mon sensors. Thermistor Thermocouple LM35 Integrated Circuit Temperature Sensor You can get more information about these sensors by clicking the links above. Laboratory The purpose of this laboratory is to get time response data for the three sensors you were introduced to labs week. Here are links to LabVIEW programs you can use. to measure temperature from the Hydra. to measure voltage from the Hydra. A subvi you need to reset the Hydra. A subvi that will take one temperature measurement on the Hydra. A subvi that will take one voltage measurement on the Hydra. You should have all the files above on your desktop. You can click on each link and save to the desktop, or you can find the NMeas folder in my public space and copy the entire folder to the desktop (best). You only need to double click the NTemps or NVolts files to start and run them in LabVIEW but they have to be taken out of the work folder! Once you have the files together in a single folder on 6 your desktop, Start to measure temperature using the thermocouple attached to terminals 21 (yellow lead) and 22 (red lead). Note that these terminals (21 and 22) are the connections for channel 1 for the Hydra. (For example, if you were doing a manual temperature reading using the front panel, you would need to set to c。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。