土木工程毕业设计翻译--护壁效应对“碎石桩性能”的数值分析-建筑结构(编辑修改稿)内容摘要:
t projects. Consequently, a circumferential elastic modulus of 3000 kN/m was used in the numerical analyses. The circumferential elastic modulus (E) of the geosynthetic was derived from the relationship J = Et, where t is the thickness of geosynthetic, which was assumed to be 5 mm for all of the numerical analyses performed. Alexiew( 2020) 写到 , 在 不同的项目 中, 当拉伸模量设计值 (J)在 20204000千牛顿 /米之间 时, 需要用土工合成材料 来包裹碎石桩。 因此, 在 数值分析 的时候常采用一个切向 的弹性模量 值 3000千牛顿 /米。 这个 土工合成材料 的切 向弹性模量(E)由公式 J=Et得到 ,其中 t是土工合成材料的厚度,这是假设所有的数值为 5mm情况下 分析完成的。 Interface elements, characterized by two sets of parameters, were used to model interaction behavior between the geosynthetic and the stone column, and between the geosynthetic and the surrounding soft soil. A MohrCoulomb failure criterion with zero cohesion was used for the interface elements. The coefficient of sliding friction (μ) between the geosynthetic and the stone column was selected to be (μ=2/3tanφ) (FHWA, 2020), where φ is the friction angle of the column material. For interaction between the geosynthetic and the soft soil, μ was assumed to be (μ=) (AbuFarsakhl, et al. 2020), where φ is the friction angle of the soft soil. 界面元素 构件含有 两个参数,其特点是采用土工合成材料和 碎石桩 之间,以及土工合成材料 和 周围的软土 地基之间的相互作用的模型。 界面元素采用无内聚力的 MohrCoulomb破坏准则。 土工合成材料和 碎石桩之间的 滑动摩擦系数( μ )取为 ( μ=2/3tanφ ) ( 美国 联邦公路管理局, 2020年),其中 φ 是 碎石桩 材料摩擦角。 对于土工合成材料 和软土地基 之间的 摩擦作用 , μ 被假定为 ( μ= ) ( AbuFarsakhl等 人, 2020年),其中 φ 是软土 地基的 摩擦角。 In order to pare the performance of the GESC with a conventional stone column (CSC), parallel analyses were also performed on a stone column without encasement. In this case, like interaction between the geosynthetic and soft soil, the coefficient of sliding friction between the stone column and the soft soil was selected to be . 为了比较 被土工合成材料包裹的碎石桩( GESC) 与传统 碎石桩( CSC)的 性能差异 , 常在裸露碎石桩上采用平行比较分析。 在这种情况下,如土工合成材料和软土 地基 之间的相互作用, 碎石桩和软土地基之间的滑动摩擦系数取。 附件 C:译文 C7 Table 1. Material Parameters 表一:材料参数 项目 模型 φ(deg) C (kPa) Ψ(deg.) E (Mpa) ν κ λ M e 碎石桩 莫尔 库伦 40 1 0 60 松软地基 改良的滑移粘土 土工合成材料 线弹性 600 NUMERICAL RESULTS 数值结果 In order to determine the stressdisplacement behavior on top of the geosynthetic encased stone column, soil nodal points corresponding to the top of the column were subjected to a series of vertical downward displacements. During these downward displacements, the average resultant stress on top of the column was recorded , allowing the stressdisplacement curve to be drawn accordingly. 为了确定在 被土工合成材料包裹的碎石桩顶部的应力与位移之间的关系 ,土壤结点 与碎石桩顶部受到的竖向沉降相一致。 在 竖向沉降期间 , 记录碎石桩顶部平均合应力,可以相应的画出应力 位移曲线。 Fig. 2 shows the stressdisplacement response for both a GESC and CSC having the parameters listed in Table 1. From Fig. 2, it can be seen that after a very small vertical settlement the mobilized vertical stress on top of the encased column is always greater than the CSC and the difference increases with additional settlement. For example, at a settlement of 25 mm (a mon serviceability criteria), the mobilized vertical stress on top of the GESC is times greater than that of CSC. This ratio bees for a settlement of 50 mm. 图 2分别 显示了 GESC和 CSC应力 位移反应, 相应 的参数 在 表 1中 列出。 从图 2中 ,可以看到 在 一个非常小 竖向沉降之 后 ,被合成材料 包裹 的碎石桩顶部的竖向应力始终大于传统碎石桩,同时增加 附加沉降 量。 例 如, 当 沉降 量为 25mm(一种常 用的适用性标准 值 ) 时 , 被土工合成材料包裹的碎石桩顶部的可变竖向应力比传统碎石桩大了。 当沉降量为 50mm时这个比例变为。 The lateral bulging of the GESC and CSC at a settlement of 50 mm is shown in Fig. 3. It is observed that in the CSC, lateral bulging occurs up to depth of m(), after which lateral bulging bees negligible. For the GESC, the maximum value of lateral displacement is much less than that for the CSC. However, after a depth of 1D, 附件 C:译文 C8 the GESC experiences more lateral displacement than the CSC. This is attributed to mobilization of more load on top of the GESC (Fig. 2), and the subsequent transmission of greater loads to higher depths in the case of the GESC. This phenomenon is studied further and discussed in more detail in the following sections. 图 3显示了沉降量为 50mm时, 被土工合成材料包裹的碎石桩和传统碎石桩的 横向膨胀 量。 可以看出 , 在 传统碎石桩中 ,横向膨胀的 最大值 发生 在 ( 天), 随着深度降低 横向膨胀 量减少。 对于 被土工合成材料包裹的碎石桩来说 ,最 大侧 向位移值远小于的 传统碎石桩。 然而, 在达到一定的深度以后 , GESC发生的侧向位移比 CSC更大。 这是由于 在 GESC中,能更多转移顶部荷载 (图 2) ,随后传递到更深的地基土壤中。 接下去,这种现象还将做更深层次的、更详细的研究和讨论。 FIG. 2. Displacement vs. stress FIG. 3. Lateral bulging vs. 应力 位移曲线 depth at a vertical settlement of 50 mm 竖向沉降量为 50mm下的侧向位移 Having found that the use of encasement can noticeably enhance the loadcarrying capacity of CSCs (Fig. 2), it is instructive to more prehensively study the loadtransfer mechanism of both CSCs and GESCs. Figs. 4a and 4b show contours of vertical displacement for both the CSC and GESC, respectively. In the CSC (Fig. 4a), vertical displacements are negligible (less than 5 mm) after a depth of 1D. This is caused by the lateral bulging failure mechanism of the CSC, which occurs in the top portion of the column. In fact, the vertical displacements that are observed in CSCs appear to be mostly due to lateral bulging of the column material rather than vertical settlements due to pression of the column material under load. However, in the GESC (Fig. 4b), vertical displacements are distributed all along the column. As an example, vertical displacements equal to 5 mm were observed to occur up to a depth of 5D. The constrained lateral bulging behavior of the GESC (Fig. 3) is the explanation for the distribution of vertical displacements along the GESC, and the resulting improved behavior of the column. 经发现, 对传统碎石桩进行包裹合成材料可以显著的提高其承载能力(图 2),有利于更加全面的研究 CSC和 GESC的荷载传递机制。 图 4a和。土木工程毕业设计翻译--护壁效应对“碎石桩性能”的数值分析-建筑结构(编辑修改稿)
相关推荐
新版场地使用费核定表(表格模板) 企业名称财政登记号 电话号码法定地址 邮编面积土 地 方式( ) 政府划拨 政府批租使 用 中方以场地使用权出资 企业租用情 况 土地使用年限 从 年 月至 年 月为止土地等级场地使用费标准企业类型 先进技术企业()产品出口企业()企业负责人盖章: 总会计师盖章: 财务负责人盖章:企业盖章:以上均由企业填列 年 月 日该企业土地等级 等财 场地使用费标准 元
riven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could
frame beam and antiknock wall middle stride over high ratio greater than pany beam, shearing force design value among them , first order choose , two stage choose , threelevel choose , first order
计应考虑的主要因素 建筑设计中采取的主动与被动的消防安全措施都能够对火灾中人的行为产生显著的影响 ,并由此达到减少火灾对建筑内人员造成的危险 ,保证人员安全疏散的目的。 建筑安全疏散设计的目的就是保证建筑中的所有人员在烟气、火焰热、恐慌及其他因火灾造成的各种危险中的安全 ,也即在建筑设计中采取主动的与被动的消防安全措施 ,来保证建筑中的所有人员在危险来临之前疏散至安全地点。 显然
beams, Fig. straight cables are preferred, since they can be more easily tensioned between two abutments. Let us start with a straight cable in a straight beam of uniform section, (a).This is simple
e temperature of the mould , reduce the internal and external difference in temperature, and lower the temperature slowly , can adopt the circulation cooling system to carry on the inside to dispel