土木专业毕业设计外文翻译-建筑结构(编辑修改稿)内容摘要:

ibed above and the viscoplastic material model considering damage [1] implemented recently by J. Aktaa. Thereby, the following load case has been used: Tcc = 600 (873K)。 the plasma heating 750 kW/m2 and the coolant pressure P = 50 MPa (500 bar). It was assumed on the basis of the study reported in the previous section that such abnormal high loads should cause an essential plastic deformation. Each cycle consists of four steps: (1) a heating and application of the pressure, 30 sec。 (2) a holding at the high temperature (HT) 400 sec, (3) a cooling to the RT, 100 sec and, finally (4) a holding at the RT 1400 sec. Note that the steps (2) and (4) are not relevant for the ABAQUSown timeindependent material model. It was possible to simulate 300 cycles with the ABAQUSown model and only 100 cycles with the UMAT because of the high cpu time needed. The results have been generated in a table format along the path AB,CD,GF and KL depicted in fig. 1. A followup examination has shown that the highest plastic strain in the model occurs near the point L of the path KL as in fig. 4 (on the right). A change of the maximum equivalent plastic strain near the point L within the first 100 cycles is depicted in fig. 5 for both material models used. A detailed investigation shows an almost linear increase of the equivalent plastic strain in the case of the ABAQUSown material model. However, the increase lies between and for the first 300 cycle. The application of the UMAT leads evidently to considerably higher plastic strains due to the creep and damage of the material. Note that the values of the variable PEMAG (the magnitude of the plastic strain) after the It heating are quite similar for both models, see fig. 5. The behavior of the maximum von Mises stress along the path KL for the first 10 cycles is illustrated in fig. 6 for both material models. For the same reason, the von Mises stress obtained using the UMAT is considerably less than in the case if the ABAQUSown model is applied. Note that the values of the von Mises stress are quite identical for both models after the Ist heating, see also fig. 6. The ABAQUSown model also leads to a material softening, which is however not as distinctive ( MPa/300 cycles) as in the case of the UtM4AT. Only more conservative results obtained under an application of the UM\AT are used below for the verification of some design rules. As follows from the curve depicted in fig 5, the magnitude of the plastic strain seems to reach a saturated value. However, to get a definite answer, more cycles (say 300) should be simulated. 隧道掘进机的循环行为模式进行了研究同时使用 Abaqus中,自己的材料模型上面所述的粘塑性材料模型考虑损害 [1]实施最近由 J. Aktaa。 因此,下面的负荷情况下使用了:部队派遣国 = 600 ( 873K)的 750 kW/m2等离子体加热和冷却剂的压力 P = 50兆帕( 500杆)。 正是基于这项研究报告的基础上假设上一节中,这种不正常的高负荷,应引起必要的塑性变形。 每个周期包括:四个步骤( 1)加热和压力, 30秒应用。 ( 2)在高温(羟色胺) 400秒,( 3)持有冷却的 RT, 100 秒,最后( 4)持有的逆转录 1400 秒。 请注意,步骤( 2)及( 4)不为 Abaqus中,自己的时间,独立的材料模型相关。 吨是可能的模拟与 Abaqus 中,自己的模式, 并与因高 CPU时间 UMAT 只有 100个循环周期所需的 300。 结果已经产生,沿着抗体,光盘,绿,吉隆坡图所示的路径表的格式。 1。 一个后续检查表明,该模型中的塑性应变最高点附近发生的路径吉隆坡 L为图。 4(右侧)。 阿最高点附近的等效塑性应变蜇头 100 内循环的变化是描绘图。 5 两种材料的模型。 一份详细的调查显示一个在 Abaqus中等效塑性应变的情况几乎线性增加自己的材料模型。 但是,这一增长介乎 3和 300的第一个周期 3。 该 UMAT 导致明显的应用大大提高塑性应变由于 蠕变和物质损失。 请注意, PEMAG变量的值(即塑性应变后,它的规模)加热十分相似,这两个模型,见图。 5。 在最高冯米塞斯沿的前 10次循环的道路吉隆坡强调行为图所示。 6两种材料模型。 出于同样的原因,冯米塞斯应力使用 UMAT 得到大大低于案件,如果 Abaqus 中,自己的模式应用。 请注意,冯米塞斯应力值是相当后 IST的加热两种型号相同,也见图。 6。 在 Abaqus中,自己的模式也导致材料软化,但它作为独特( 11 没有。 5 MPa/300周期)为在 UtM4AT 情况。 只有在一个比较保守的密歇 根大学 \取得的成果在应用使用下面的一些设计规则的验证。 由图 5所示的曲线如下,对塑性应变程度似乎达到饱和值。 但是,为了得到一个明确的答案,更多的周期(例如 300)应模拟。 OF DESIGN RULES The aim is now to pare the results discussed above with a prediction of some design rules based on linearelastic simulations. To apply the design rules, Smt, the minimum of Sm and St should be evaluated. Thereby, Sm is the lowest stress intensity at a given temperature among the timeindependent s。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。