中英文对照翻译---表面活性(编辑修改稿)内容摘要:

(polar phase), which forced the molecules to adsorb at the air– water interface and to micellize in the bulk of their solutions in order to decrease that repulsion. While, the lowest critical micelle concentration was found at base containing PEO2020 and the hydrophobic chains is oleate (Table 2), which referred to the above reasons and also to the unsaturation sites in the oleate chain which increases the repulsion extent. The effectiveness (π cmc) values showed gradual decrease by increasing the hydrophobic chain length indicating the increasing of accumulated surfactant molecules at the interface. The maximum accumulation was indicated by the lowest surface tension depression at the critical micelle concentration and was recorded for SB2020oleate molecules at 44 mN/m . The effectiveness values as well as the maximum surface excess considered as a clear description for the accumulation extent of amphiphiles molecules at the air– water interface. The calculated values of the maximum surface excess showed increasing trend from SB2020decanoate to SB2020oleate as represented from the slope of preCMC region of surface tension profile (Fig. 1). The maximum surface excess values were increased from decanoate to oleate derivatives indicating higher surface concentration and increasing number of surfactant molecules at the interface. Values of the minimum surface area occupied by the nonionic Schiff base amphiphiles at the interface (Amin) were calculated according to the equation: where, Γ max and NAV are the maximum surface excess and Avogadro’ s number, respectively. Increasing the maximum surface excess values indicates the increasing of adsorbed molecules at the interface, hence the area available for eachmolecule will decrease. That causes the pacting of surfactant molecules at the interface to form denser layer. The values of critical micelle concentration, effectiveness, maximum surface excess and minimum surface area of the Schiff base nonionic amphiphiles were listed in Table 2. . 表面活性 . 疏水链 (非极性链) 长度的影响 Fig. 1表示表面张力与合成的包含相同分子量聚乙二醇 (n=45 EO 单元 )的非离子型两亲席夫碱浓度直接的联系。 很明显,表面张力具有非离子型表面活性剂的特征 ,出现了 相对较高的表面张力值。 随着从 10到 18增加疏水链上的亚甲基数, 临界胶束浓度逐渐 降低 [17]。 这种影响 在 前人 的 著作中已经 有 了 解释 [20,21],是 由于疏水链(非极性相)和水相(极性相) 存在 斥力 ,这种斥力迫使在空气 /水界面形成分子吸附和在大部分溶液中形成胶束以减小它。 含 有 PEO2020和油酸做疏水链的席夫碱 (Table 2) 最低临界胶束浓度 为 , 其中提到的上述原因,也是为了在油酸链 增加 不饱和点的排斥程度。 缓蚀率的值 (π cmc) 随着增加疏水基的链长逐渐降低,它说明表面活性剂分子在界面的累积量增加。 最大累积值是 临界胶束浓度 下的最低表面张力,最大值为 SB2020oleate 的 分子数在 44 mN/m时的值。 效率值 也是最大 剩余 表面,是两亲分子在空气 /水界面上的聚集程度的 一个明确的说明。 最大 剩余面积值的计算表明,从 SB2020decanoate 到 SB2020oleate 增加趋势,表示表面张力前临界胶束浓度区域的斜率范围。 从癸酸到油酸衍生物增加最大 剩余 表面,显示有较高的表面浓度,表面活性剂在相界面的分子数也随着增加。 非离子 型 希夫 碱 两亲分子在界面 所占最小表面积值( Amin) 计算 公式 如下: 式中Γ max表示最大 剩余 面积, NAV 表示阿伏伽德罗数。 最大剩余面积的增加是表示界面分子吸附的增加,因此每个分子的可用区域减少。 表面活性剂分子间的压迫 力使得在相界面形成致密的膜层。 临界胶束浓度, 缓蚀效率 ,最大 剩 余表面 和 最低的 非离子型两亲席夫 碱 最小表面区域的值 分别 列于表 2。 . Effect of polyethylene oxide content (polar chains) Fig. 2 represents the effect of ethylene oxide contents on the surface activities of the synthesized nonionic Schiff base amphiphiles at constant hydrophobic chain length (16 methylene groups). It is clear that increasing the number of ethylene oxide units within the nonionic moiety from 9 to 45 and 68 EO units increases the hydrophilic characters of these molecules, which increases their critical micelle concentrations and also their surface tension values. Increasing of the CMC values can be referred to the formation of hydrogen bonds (HBs) between amphiphiles and water molecules. HBs increase the adsorption of these amphiphiles at the air– water interface, which increases the CMC values gradually. The maximum CMC value was observed for the longest polyethylene oxide chain (n = 68) at mM/L. On the other hand, the effectiveness (π CMC) values of the synthesized Schiff base nonionic amphiphiles SBn 16 were increased gradually by decreasing the length (n) of the nonionic moiety (where n = 9, 45 and 68) [22,23]. The effectiveness (π CMC) and the efficiency (pC20) values showed an increasing trend by increasing the hydrophobic chain length. The maximum lowering in the surface tension values was corresponded to the SB400palmitate. The maximum surface excess (Γ max) values showed lower surface concentration for the Schiff base amphiphiles which have the higher ethylene oxide content. The highest value of the maximum surface excess was observed for SB40016 (Table 2). On contrarily, the minimum surface area (A min) values increased by increasing the nonionic chain lengths, the maximum value of the surface area was observed for SB300016 (Table 2). . 聚环氧乙烷含量的影响(极性链) Fig. 2 表示已合成的非离子型席夫碱的疏水链长为常 数( 16 亚甲基组)时,环氧乙烷对表面活性的影响。 很明显,在 非离子基团 中从 9到 45和 68增加环氧乙烷的单元数 这些分子的亲水 性也增强,它增加了它们的 临界胶束浓度 和表明张力值。 临界胶束浓度值的增大指明在两亲分子和水分子之间形成了氢键 (HBs).氢键增加了这些两亲分子在空气 /水界面吸附,这也逐渐增加了临界胶束浓度值。 最大临界胶束浓度值 的得出是在 聚环氧乙烷链最长 ( n=68)时浓度为 mM/L下。 另一方面,非离子型席夫碱两亲分子 SBn 16的缓蚀效果 (π CMC)。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。