usingprobabilityandprobabilitydistributions(编辑修改稿)内容摘要:
1 for each xi S P(xi) = 1 Discrete Probability Distribution Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 433 Discrete Random Variable Summary Measures Expected Value of a discrete distribution (Weighted Average) E(x) = Sxi P(xi) Example: Toss 2 coins, x = of heads, pute expected value of x: E(x) = (0 x .25) + (1 x .50) + (2 x .25) = x P(x) 0 .25 1 .50 2 .25 Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 434 Standard Deviation of a discrete distribution where: E(x) = Expected value of the random variable x = Values of the random variable P(x) = Probability of the random variable having the value of x Discrete Random Variable Summary Measures P( x )E( x )}{xσ 2x (continued) Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 435 Example: Toss 2 coins, x = heads, pute standard deviation (recall E(x) = 1) Discrete Random Variable Summary Measures P( x )E( x )}{xσ 2x . 7 0 7. 5 0(. 2 5 )1)(2(. 5 0 )1)(1(. 2 5 )1)(0σ 222x (continued) Possible number of heads = 0, 1, or 2 Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 436 Two Discrete Random Variables Expected value of the sum of two discrete random variables: E(x + y) = E(x) + E(y) = S x P(x) + S y P(y) (The expected value of the sum of two random variables is the sum of the two expected values) Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 437 Covariance Covariance between two discrete random variables: σxy = S [xi – E(x)][yj – E(y)]P(xiyj) where: xi = possible values of the x discrete random variable yj = possible values of the y discrete random variable P(xi ,yj) = joint probability of the values of xi and yj occurring Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 438 Covariance between two discrete random variables: xy 0 x and y tend to move in the same direction xy 0 x and y tend to move in opposite directions xy = 0 x and y do not move closely together Interpreting Covariance Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 439 Correlation Coefficient The Correlation Coefficient shows the strength of the linear association between two variables where: ρ = correlation coefficient (“rho”) σxy = covariance between x and y σx = standard deviation of variable x σy = standard deviation of variable y yxyxσσσρ Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 440 The Correlation Coefficient always falls between 1 and +1 = 0 x and y are not linearly related. The farther is from zero, the stronger the linear relationship: = +1 x and y have a perfect positive linear relationship = 1 x and y have a perfect negative linear relationship Interpreting the Correlation Coefficient Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 441 Chapter Summary Described approaches to assessing probabilities Developed mon rules of probability Used Bayes‟ Theorem for conditional probabilities Distinguished between discrete and continuous probability distributions Examined discrete probability distributions and their summary measures Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 442 Business Statistics: A DecisionMaking Approach 6th Edition Chapter 5 Discrete and Continuous Probability Distributions Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 443 Chapter Goals After pleting this chapter, you should be able to: Apply the binomial distribution to applied problems Compute probabilities for the Poisson and hypergeometric distributions Find probabilities using a normal distribution table and apply the normal distribution to business problems Recognize when to apply the uniform and exponential distributions Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 444 Probability Distributions Continuous Probability Distributions Binomial Hypergeometric Poisson Probability Distributions Discrete Probability Distributions Normal Uniform Exponential Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 445 A discrete random variable is a variable that can assume only a countable number of values Many possible outes: number of plaints per day number of TV‟s in a household number of rings before the phone is answered Only two possible outes: gender: male or female defective: yes or no spreads peanut butter first vs. spreads jelly first Discrete Probability Distributions Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 446 Continuous Probability Distributions A continuous random variable is a variable that can assume any value on a continuum (can assume an uncountable number of values) thickness of an item time required to plete a task temperature of a solution height, in inches These can potentially take on any value, depending only on the ability to measure accurately. Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 447 The Binomial Distribution Binomial Hypergeometric Poisson Probability Distrib。usingprobabilityandprobabilitydistributions(编辑修改稿)
相关推荐
或一段时间驻外地的用户就有可能离网。 • 应对:建议用户尽量丌要呼转到归属地以外的电话上。 • (5).很多用户反映垃圾短信多。 • 应对:向用户解释有些是公司免费给用户阅读的,并引导用户阅读。 实在丌愿意用的,帮用户联系厂家取消或屏蔽消息源。 • • ( 6) . 机卡分离问题:近期接到合约计划用户来电质询, “ 为什么月初没有返还话费。 ” 这主要有一下两种情况:一
负反馈和 PI 调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。 如果对系统的动态性能要求更高,如快 速启动、突然负载动态速降小等等,单闭环系统很难满足要求。 主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。 2 本系统设计的要求: 1).该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围( D≥10 ),系统在工作范围内能稳定工作。
.................................. 225 三、天翼手机 .............................................................................................. 225 四、固定电话 ...............................................
变动费用是指它的总额随产量的增 加 减 少也 成比例增 加或者 减 少。 例如产品直接耗用的 外协件加工费 、 原材料费 、 外购件 费等等。 但 是 产品单位费用而言,变动费用则基本不会改 变。 上述可知,冲压件生产成本是由固定费和可变费这两部分组成的,所以只要设法降低固定费用或可变费用,都能使生 产成本降 低,利 润增加。 可见企业要提高经济效益,就闽南理工学院毕业设计 12
客户类型划分”可以分解为以下一些 Use Case:“客户价值判断”、“客户类型划分”及“销售策略建议”。 客服经理通过 CRM 系统分析由进存货管理系统和呼叫中心积累的大量的客户资料,此时, Use Case“客户价值判断”就开始运行,它先判断客户是否值得我们去维护保持,即客户收益是否大于维持客户所需成本。 如不值得,则 Use Case“客户价值判断”停止,并显示相关信息;如值得去维持
壁;( 2)蒸汽压力不足,都会致使 TSL42 低于 117℃。 胶气出现香味时: 表明 V33 冷却不足,使水溶性气体挥发,当 TC99 与 TT02 相差 68℃适宜 ,在不开 V V31 时看 TC9 TT02 温度差来调节管道温度时打开 V3323分钟后看温度差,再调整,如果 V V31 打 开,则看 V34真空度调整,检查标准,排地时水中无香味,如果温度下降,但香味12 依旧,表明(