estimationandhypothesistestingfortwopopulationparameters(编辑修改稿)内容摘要:
ple sizes 30 or not 30 Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 920 Hypothesis Tests for Two Population Proportions Lower tail test: H0: μ1 μ2 HA: μ1 μ2 ., H0: μ1 – μ2 0 HA: μ1 – μ2 0 Upper tail test: H0: μ1 ≤ μ2 HA: μ1 μ2 ., H0: μ1 – μ2 ≤ 0 HA: μ1 – μ2 0 Twotailed test: H0: μ1 = μ2 HA: μ1 ≠ μ2 ., H0: μ1 – μ2 = 0 HA: μ1 – μ2 ≠ 0 Two Population Means, Independent Samples Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 921 Hypothesis tests for μ1 – μ2 Population means, independent samples σ1 and σ2 known σ1 and σ2 unknown, n1 and n2 30 σ1 and σ2 unknown, n1 or n2 30 Use a z test statistic Use s to estimate unknown σ , approximate with a z test statistic Use s to estimate unknown σ , use a t test statistic and pooled standard deviation Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 922 Population means, independent samples σ1 and σ2 known σ1 and σ2 unknown, n1 and n2 30 σ1 and σ2 unknown, n1 or n2 30 2221212121nσnσμμxxzThe test statistic for μ1 – μ2 is: σ1 and σ2 known * Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 923 Population means, independent samples σ1 and σ2 known σ1 and σ2 unknown, n1 and n2 30 σ1 and σ2 unknown, n1 or n2 30 σ1 and σ2 unknown, large samples The test statistic for μ1 – μ2 is: 2221212121nsnsμμxxz* Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 924 Population means, independent samples σ1 and σ2 known σ1 and σ2 unknown, n1 and n2 30 σ1 and σ2 unknown, n1 or n2 30 σ1 and σ2 unknown, small samples Where t/2 has (n1 + n2 – 2) ., and 2nns1ns1ns21222211p 21p2121n1n1sμμxxzThe test statistic for μ1 – μ2 is: * Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 925 Two Population Means, Independent Samples Lower tail test: H0: μ1 – μ2 0 HA: μ1 – μ2 0 Upper tail test: H0: μ1 – μ2 ≤ 0 HA: μ1 – μ2 0 Twotailed test: H0: μ1 – μ2 = 0 HA: μ1 – μ2 ≠ 0 /2 /2 z z/2 z z/2 Reject H0 if z z Reject H0 if z z Reject H0 if z z/2 or z z/2 Hypothesis tests for μ1 – μ2 Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 926 Pooled sp t Test: Example You’re a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE amp。 NASDAQ? You collect the following data: NYSE NASDAQ Number 21 25 Sample mean Sample std dev Assuming equal variances, is there a difference in average yield ( = )? Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 927 Calculating the Test Statistic 1 . 2 2 5 6225211 . 1 61251 . 3 01212nns1ns1ns 2221222211p 2 . 0 4 02512111 . 2 2 5 602 . 5 33 . 2 7n1n1sμμxxz21p2121 The test statistic is: Business Statistics: A DecisionMaking Approach, 6e 169。 2020 PrenticeHall, Inc. Chap 928 Solution H0: μ1 μ2 = 0 . (μ1 = μ2) HA: μ1 μ2 ≠ 0 . (μ1 ≠ μ2) = df = 21 + 25 2 = 44 Critical Values: t = 177。 Test Statistic: Decision: Conclusion: Reject H0 at = There is evidence of a difference in means. t 0 .025 Reject H。estimationandhypothesistestingfortwopopulationparameters(编辑修改稿)
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。
用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。