高级微观经济学preferenceandchoice(编辑修改稿)内容摘要:

ice with the wealth w0.  Definition: Walras (petive) budget set  Proposition4: if X is concave, then is np( , ) { : }nB w w    p x p x( , )Bwplecture5 for Chu Kechen Honors College function  For any p and w are strictly positive, the corresponding demand set x(p,w) are nonempty, if x(p,w) is single point, we call it the Walrasian( Marshallian) demand function.  x(p,w) is homogenous of degree zero and satisfied Walras’ law. That is px=w for all (we will prove them next lecture) ( , ) and 0 , 0w p wx x plecture5 for Chu Kechen Honors College function  Wealth effects:  Engel function: given price ,function over wealth  Wealth expansion path:  Wealth effects: p( , )wxp{ ( , ) : 0 }E w wp xp12( , )( , )( , )( , )nxwwxwwwxwwDwpppxplecture5 for Chu Kechen Honors College function  Wealth effects:  Commodity l is normal goods if  Commodity l is inferior goods if  The demand is normal if See the fig ( , ) / 0lx w w  p( , ) / 0lx w w  p( , ) / 0 1 ,lx w w l n    plecture5 for Chu Kechen Honors College function  Price effects:  Supply curve:  Price effects:  Giffen good: See the fig. { ( , ) : }l l lw x x p p p1111( , ) ( , )( , ) ( , )( , )nnnnx w x wpppx w x wppDwxp( , ) / 0llx w p  plecture5 for Chu Kechen Honors College function  Cournot Aggregation: if Walrasian demand functi。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。