高级微观经济学exchange(编辑修改稿)内容摘要:

zp g pz pp1[ m a x ( 0 , ( ) ] m a x ( 0 , ( ) ) f o r 1Ki j ijp z z i k    ppThe existence of Walrasian equilibrium – And – Sum up with i – So, we have: • Example: CD economy 1( ) [ m a x ( 0 , ( ) ] ( ) m a x ( 0 , ( ) ) Ki i j i ijz p z z z     p p p p1 11[ m a x ( 0 , ( ) ] ( ) ( ) m a x ( 0 , ( ) ) kkKj i i i ijiiz p z z z      p p p p11( ) m a x ( 0 , ( ) ) = 0 f o r ( ) 0kki i i iiiz z p z   p p p( ) 0iz  pThe first theorem of welfare economics • Pareto efficient allocations: • The solution is Pareto sets and also called contract curve. See the fig. 112 2 21 2 1 2m a x ( ). . ( )us t u uww  12x , xxxxx12( , )xxThe first theorem of welfare economics • If is a Walrasian equilibrium, then x is Pareto efficient. ()x,pThe second theorem of welfare economics • If x* is a Pareto efficient allocation and , suppose that preference are convex, continuous and monotonic, then x* is a Walrasian equilibrium for the initial endowment for i=1……n. • Proof1: upper counter s。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。