江苏省高考数学空间向量的应用(编辑修改稿)内容摘要:
析 :本题主要检测利用空间向量的知识计算角的问题.题设中过点 A的三条射线 AB, AC,AP两两互相垂直,故可以以 A为原点建立空间直角坐标系,然后利用向量知识进行求解 . 变式 ,在直棱柱 ABCA1B1C1的底面 △ABC 中, CA=CB=1, ∠ BCA=90176。 ,棱 AA1=2,M是 C1C的中点. (1)求 A1B与 B1C的夹角的余弦值; (2)求平面 A1MB与平面 AMB所成 二面角的平面角 (其大小为锐角 ) 的余弦值.。江苏省高考数学空间向量的应用(编辑修改稿)
相关推荐
6 ]( )22k k k Z . 易错点 本题易出错的地方是平移、伸缩时,解析式的变化,再就是用等差数列的条件时讨论不全. 变变 式式 与与 引引 申申 4:: 函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数 f(x)= 1- sinx+ 1+ sinx的性质,并在此基础上,作出其在[ , ] 的草图. 本节主要考查 ⑴
计 .( 4)线性回归分析.解题途径:先作出散点图,再根据公式确定回归方程中的参数 ba, ,并可以根据求出的方程做预测或给出建议. 习题 42 1. 某公司甲、乙、丙、丁四个地区分别有 150 个、 120 个、 180个、 150 个销售点.公司为了调查产品销售的情况 ,需从这 600 个销售点中抽取一个容量为 100 的样本,记这项调查为①;在丙地区中有 20 个特大型销售点,要从中抽取
3。 江苏丹阳高模 )在一次运动会上,某单位派出了有 6 名主力队员和 5名替补队员组成的代表队参加比赛. (1)若主力队员中有 2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有 2 名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的 5名队员中至少有 3名主力队员,教练员有多少种组队方案。 (2)如果随机抽派 5名队员上场比赛,将主力队员参加比赛的人数记为 X,求随机变量 X
的斜率 k1= ,直线 l2的斜率 k2= . 设事件 A为 “ 直线 l1∩l2= ∅” . a, b∈{1,2,3,4,5,6} 的总事件为 (1,1), (1,2), „ , (1,6), (2,1), (2,2), „ , (2,6), „ ,(6,5), (6,6),共 36种. 若 l1∩l2= ∅,则 l1∥l2 ,即 k1=k2,即 b=2a. 满足条件的实数对 (a, b)有
, „ , akn, „ 成等比数列,求数列 {kn}的通项公式. 解析:设等差数列 an 的公差为 d,则, a2a2=a1a4 , 即 (a1+d)2=a1(a1+3d),即 d2a1d=0. 因为 d 0,所以 d=a1,等比数列 a1, a3, ak1, ak2, „ , akn, „ 的公比 q= = =3, 所以 akn=a13n+1. akn 既是等差数列 {an}中的第 kn 项
2), (A2, B1), (A2, B2), (A3, B1), (A3, B2), (B1, B2), (B1, C1), (B2,C1),共 9种 . 例 3.“ 世界睡眠日 ” 定在每年的 3月 21日 .2020年的世界睡眠日主题是 “ 科学管理睡眠 ” ,以提高公众对健康睡眠的自我管理能力和科学认识.为此,某网站 2020 年 3 月 13 日到 3月 20