微型汽车手动变速器结构设计_学士学位论文(编辑修改稿)内容摘要:

, 0. 22xx  故。 两齿轮分度圆仍相切 , 节圆与分度圆重合 , 全齿高不变。 一挡齿轮参数如表。 ( 2)对中心距进行修正 因为计算齿轮和 hZ 后 , 经过取整数使中心距有了变化 , 所以应根据取定的 hZ 重新计算中心距 A 作为各挡齿轮齿数分配的依据。 702 coshnZmA mm。 ( 3)确定常啮合传动齿轮副的齿数 由一挡传动比 291 1 10ZZi ZZ 求出常啮合传动齿轮的齿数比: 2 10119ZZi ( 31) 而常啮合传动齿轮的中心距与一挡齿轮的中心距相等 , 即: 12()2cosm Z ZA  ( 32) 表 一挡齿轮基本参数 学学士学位论文 10 序 号 计算 项目 计算公式 1 端面压力角 ta nta n 0. 40 8 , 22 .1 8c os ntt   2 分度圆直径 10 Z m mm 9 Z m mm 3 齿顶高 01( ) f m m m   02( ) 1. 95anh f m m m   5 齿顶圆直径 2 5 3 .7aad d h mm   2 9 6 .3aad d h mm   6 齿根圆直径 2 4 0 .5 7 5ffd d h m m   2 8 3 .1 7 5ffd d h m m   7 当量齿数 103 24c osn ZZ    93 46cosn ZZ  8 齿宽 7 2 .5 1 7 .5cb K m m m    7 2 .5 1 7 .5cb K m m    由公式( 31)( 32)得: 1219, 32ZZ。 核算 291 1 10ZZi ZZ =, 与前 1  相差较小 , 故由( 32)式得:齿轮 2 精确的螺旋角 2  。 凑配中心距 1239。 () 702 c os nZ Z mA m m A  ; 斜齿端面模数 2 .7 5co snt mm mm; 啮合角 39。 12c o s ( ) c o s 0 . 9 4 1 92 tm ZZA  , 故 39。  , 角度变位。 根据齿数比 21 Zu Z , 查得 120 . 0 2 , 0 . 2 1 0 . 2 3x x x     故。 常啮合齿轮参数如表。 表 常啮合齿轮基本参数 学学士学位论文 11 序 号 计算项目 计算公式 1 理论中心距 120 7 0 .1 2 52 tZZA m m m 2 中心距 距变动系数 0 5n nAAm    3 齿顶降低系数      4 分度圆直径 1 Z m mm 2 88td Z m mm 5 齿顶高 01( ) 2. 95a n nh f m m m    02( ) 1. 85a n nh f m m m    6 齿根高 01( ) f c m m m    02( ) 4. 63 75fnh f c m m m   7 齿 顶圆直径 2 5 8 .1 5aad d h m m   2 9 1 .7aad d h mm   8 齿根圆直径 2 4 5 .1 7 5ffd d h m m   2 7 8 .7 2 5ffd d h m m   9 当量齿数 13 25cosn ZZ  23 42cosn ZZ  10 齿宽 7 2 .5 1 7 .5cb K m m m    7 2 .5 1 7 .5cb K m m    ( 4)确定其他各挡的齿数 二挡齿轮是斜齿轮 , 螺旋角 8 与常啮合齿轮 2 不同 , 由 722 81ZZi ZZ得: 71282ZZi ( 33) 而 788()2 cosm Z ZA  ( 34) 此外 , 从抵消或减少中间轴上的轴向力出发 , 还必须满足下列关系式: 学学士学位论文 12 2721 2 88ta n (1 )ta n ZZZ Z Z  ( 35) 联解上述三个方程式 , 采用试凑法 , 选定螺旋角 8 22 , 解式( 33)( 34)求出 7831, 21ZZ。 再把 7 8 8ZZ、 及 代入式( 35) , 检查近似满足轴向力平衡关系。 凑配中心距 7839。 8() 7 0 . 1 0 52 c o s nZ Z mA m m A  ; 斜齿端面模数8 2 .7 0c o snt mm m m; 啮合角 39。 7839。 c o s ( ) c o s 0 . 9 3 9 5 72 tm ZZA  , 故 39。   , 正角度变位。 根据齿数比 78 Zu Z , 查得 870 . 0 0 2 , 0 . 1 2 0 . 1 1 8x x x    故。 二挡齿轮参数如表 33。 同理:三挡齿轮 56 62 7 2 5 2 2ZZ   , , 近似满足轴向力平衡关系。 凑配中心距 5639。 6() 7 0 . 1 0 52 c o s nZ Z mA m m A  ; 斜齿端面模数6 2 .7 0c o snt mm m m; 表 二挡齿轮基本参数 学学士学位论文 13 序号 计算项目 计算公式 1 理论中心距 780 7 0 .22 tZZA m m m 2 中心距变动系数 0 8nnAAm    3 齿顶降低系数      4 分度圆直径 8 Z m mm 7 Z m mm 5 齿顶高 01( ) n nh f m m m    02( ) 2a n nh f m m m    6 齿根高 01( ) f c m m m    02( ) 4. 35 75fnh f c m m m    7 齿顶圆直径 2 6 1 .8 9aad d h m m   2 8 7 .7aad d h mm   8 齿根圆直径 2 4 9 .1 7 5ffd d h m m   2 7 4 .9 8 5ffd d h m m   9 当量齿数 83 26cosn ZZ  73 39cosn ZZ  10 齿宽 6 2 .5 1 5cb K m m m    6 2 .5 1 5cb K m m m    啮合角 39。 5639。 c o s ( ) c o s 0 . 9 3 9 5 72 tm ZZA  , 故 39。   , 正角度变位。 根据齿数比 56 Zu Z , 查得 650 . 0 0 2 , 0 . 0 6 0 . 0 5 8x x x    故。 三挡齿轮参数如表。 同理:四挡齿轮 34 42 2 2 8 2 5 .8ZZ   , , 近似满足轴向力平衡关系。 凑配中心距 3439。 4() 6 9 . 4 22 c o s nZ Z mA m m A  ; 表 三挡齿轮基本参数 学学士学位论文 14 序号 计算项目 计算公式 1 理论中心距 560 7 0 .22 tZZA m m m 2 中心距变动系数 0 8n nAAm    3 齿顶降低系数      4 分度圆直径 6 Z m mm 5 Z m mm 5 齿顶高 01( ) n nh f m m m    02( ) 2. 15a n nh f m m m    6 齿根高 01( ) f c m m m    02( ) 4. 20 75fnh f c m m m    7 齿顶圆直径 2 7 2 .3 9aad d h m m   2 7 7 .2aad d h mm   8 齿根圆直径 2 5 9 .6 7 5ffd d h m m   2 6 4 .4 8 5ffd d h m m   9 当量齿数 63 31cosn ZZ  53 34cosn ZZ  10 齿宽 6 2 .5 1 5cb K m m m    6 2 .5 1 5cb K m m m    斜齿端面模数4 2 .7 8c o snt mm m m; 啮合角 39。 3439。 c o s ( ) c o s 0 . 9 4 0 82 tm ZZA  , 故 39。   , 负角度变位。 根据齿数比 43 Zu Z , 查得 430 . 0 1 8 , 0 . 1 2 , 0 . 1 3 8x x x     故。 四挡齿轮参数如表 35。 表 四挡齿轮基本参数 序号 计算项目 计算公式 学学士学位论文 15 1 理论中心距 340 6 9 .52 tZZA m m m 2 中心距变动系数 0 nAAm  3 齿顶降低系数       4 分度圆直径 4 Z m mm 3 Z m mm 5 齿顶高 01( ) n nh f m m m    02( ) 2 .7a n nh f m m m    6 齿根高 01( ) f c m m m    02( ) 4. 40 75fnh f c m m m    7 齿顶圆直径 2 8 4 .5 3aad d h m m   2 6 6 .5 6aad d h m m   8 齿根圆直径 2 7 0 .3 1 5ffd d h m m   2 5 2 .3 4 5ffd d h m m   9 当量齿数 43 38cosn ZZ  33 30cosn ZZ  10 齿宽 6 2 .5 1 5cb K m m m    6 2 .5 1 5cb K m m m    ( 5)确定倒挡齿轮齿数 倒挡齿轮选用的模数往往与一挡相近。 倒挡齿轮 13Z 的齿数 , 一般在 21~23 之间 , 初选 13 23Z  , 计算出输入轴与倒挡轴的中心距 39。 A。 设 39。 1 2 1 2 1 312 1 , ( ) 5 52Z A m Z Z m m   则。 为保证倒挡齿轮的啮合和不产生运动干涉 , 齿轮 11 和 12 的齿顶圆之间应保持有 以上的间隙 , 故取 11 34Z  , 满足输入轴与中间轴的距离。 假 设 当 齿 轮 11 和 12 啮合时 , 中 心 距39。 39。 1 1 1 21 ( ) 6 8 . 7 52A m Z Z A   , 且 39。 39。 A mm。 故倒挡轴与中间轴学学士学位论文 16 的中心距1 1 1 31 ( ) 7 1 . 2 52A m Z Z m m  总, 圆整后得 70A mm总。 根据中心距 39。 A 求啮合角 39。  : 39。 1 2 1 339。 c o s ( ) c o s 0 . 9 3 9 72m ZZA  , 故 39。 20 , 高度变位。 根据齿数比 1312 Zu Z, 查得 12 130 , , x x    故[7]。 11 212 1 ZZi ZZ倒。 轮齿强度计算。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。