基于波原子变换的语音信号去噪毕业论文(编辑修改稿)内容摘要:
60 . 70 . 80 . 91F i l t e r b a n k p l o t f o r N = 3 2 w a v e a t o m c o e f f i c i e n t s x [ r a d s ] c e n t e r f r e q . 13 Fig. The relationship of timefrequency (Heisenberg boxes) The wavelet packet tree and the relationship of timefrequency (Heisenberg boxes) [5] for wave atom coefficients with signal length of 32 samples are shown in Fig. . In Fig. , we know that each bump in frequency is supported on an interval of length 2𝜋2𝑗 and the center of the positive frequency bump is 𝜋2𝑗𝑚. The 𝜔𝑗,𝑚 is defined as the center of the positive frequency bump as follows. 𝜔𝑗,𝑚 = 𝜋2𝑗𝑚 () For each wave number 𝜔𝑗,𝑚 , the coefficients 𝑐𝑗,𝑚,𝑛 can be seen as a decimated convolution at scale 2−𝑗. 14 𝑐𝑗,𝑚,𝑛 = ∫𝜑𝑚𝑗 (𝑥 −2−𝑗𝑛)𝑢(𝑥)𝑑𝑥 () By Plancherel theorem [18], 𝑐𝑗,𝑚,𝑛 = 12𝜋∫𝑒𝑗2−𝑗𝑛𝜔𝜑̂𝑚𝑗 (𝜔)̅̅̅̅̅̅̅̅̅𝑢̂(𝜔)𝑑𝜔 () Assuming that the function u is accurately discretized at 𝑥𝑘 = 𝑘, =1/𝑁,𝑘 = 1,…,𝑁, 𝑁 means signal length, so the discrete coefficient equation as follows. 𝑐𝑗,𝑚,𝑛 ≈ 𝑐𝑗,𝑚,𝑛𝐷 = ∑ 𝑒𝑗2−𝑗𝑛𝑘𝜑̂𝑚𝑗 (𝑘)̅̅̅̅̅̅̅̅̅𝑢̂(𝑘)𝑘=2𝜋(−𝑁2+1:1:𝑁2) () This equation makes sense for couples( 𝑗,𝑚) for which the support of 𝜑̂𝑚𝑗 (𝑘) lies entirely inside the interval [−𝜋𝑁,𝜋𝑁], so we may write 𝑘 ∈ 2𝜋𝑍 [1]. Fig. shows examples of wave atom coefficients and wavelet coefficients with DB8 wavelet for a clean speech signal. Fig. shows examples of a noisy speech signal with SNR = 10dB and its coefficients. 15 (a) (b) (c) Fig. Examples of a clean speech and its transformation coefficients (a) clean speech signal (b) wave atom coefficients (c) wavelet coefficients 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5x 1 04 0 . 4 0 . 3 0 . 2 0 . 100 . 10 . 20 . 30 . 4c le a n s p e e c h0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5x 1 04 0 . 8 0 . 6 0 . 4 0 . 200 . 20 . 40 . 60 . 8w a v e a t o m c o e f f i c i e n t s o f cl e a n sp e e c h0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5x 1 04 0 . 5 0 . 4 0 . 3 0 . 2 0 . 100 . 10 . 20 . 30 . 4. 5w a v e le t c o e f f i ci e n t s o f cl e a n sp e e c h 16 (a) (b) (c) Fig. Examples of a noisy speech and its transformation coefficients (a) noisy speech signal (b) wave atom coefficients (c) wavelet coefficients 0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5x 1 04 0 . 4 0 . 3 0 . 2 0 . 100 . 10 . 20 . 30 . 4n o i sy s p e e c h0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5x 1 04 0 . 8 0 . 6 0 . 4 0 . 200 . 20 . 40 . 60 . 8w a v e a t o m c o e f f i c i e n t s o f n o i sy sp e e c h0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5x 1 04 0 . 5 0 . 4 0 . 3 0 . 2 0 . 100 . 10 . 20 . 30 . 40 . 5w a v e l e t c o e f f i ci e n t s o f n o i sy sp e e c h 17 3. THRESHOLDING METHOD FOR NOISE REDUCTION The content in this chapter is mainly around the threshold setting. The main subject is how to set the parameter of threshold under the condition of hard threshlolding and soft thresholding. Before introducing the presentation of the parameter setting, this chapter starts with the parison of wave atom coefficients of the clean speech signal and noisy speech signal. Then, explain the figures about parameter setting under the condition of hard thresholding and soft transform as well as wave atom transform is done using the tool box released in the inter [12]. Hard and Soft Thresholdings Let y be a finite length observation sequence of the signal x which is corrupted by . zero mean, white Gaussian noise n with a standard deviation 𝜀. 𝑦 = 𝑥+ 𝜀𝑛 () The goal is to recover the signal x from the noisy observations y. Let W 18 denote a wavelet transform matrix for discrete wave atom transform. Then equation can be written in the wave atom domain as NXY () where capital letters indicate variables in the transformed domain, ., WyY , where W denotes a wave atom transform matrix. Let 𝑋𝑒𝑠𝑡 be an estimate of the clean signal X based on the noisy observation Y in the wave atom domain. The clean signal x can be estimated by 𝑥 = 𝑊−1𝑋𝑒𝑠𝑡 = 𝑊−1𝑌𝑡ℎ𝑟 () where 𝑌𝑡ℎ𝑟 denotes the wave atom coefficients after thresholding. Before the setting the parameter, thresholding functions [16] will be introduced. The method is based on thresholding in the signal that each transformed signal is pared to a given threshold。 if the coefficient is smaller than the threshold, then it is set to zero, otherwise it is kept or slightly reduced in amplitude. Hard and soft thresholding are used for denoising the signals. Hard thresholding can be described as the usual process of setting to zero the elements whose absolute values are lower than the threshold. The Hard threshold signal is x if 𝑥 ≥ 𝑡𝑟 and is 0 if x thr, where „thr‟ is a threshold value. Soft thresholding is an extension of hard thresholding, in other words, first setting to zero the 19 elements whose absolute values are lower than the threshold, and then shrinking the nonzero coefficients towards 0. If 𝑥 ≥ 𝑡𝑟, the soft threshold signal is (𝑠𝑔𝑛(𝑥)∙(𝑥 − 𝑡𝑟)) and if x thr, the soft threshold signal is 0. Given a transformed signal Y and threshold 𝜆 0 , two thresholding methods can be expressed as follows. The hard thresholding method is given as Eq. . YYYYT H R h a r d ,0 ,)( () The soft thresholding method is given by YYYYYT H R s o f t ,0 ),)(s g n ()( () where 𝑇𝐻𝑅(∙) represents the output value after thresholding. Fig. displays the hard and soft thresholding functions. 20 (a)。基于波原子变换的语音信号去噪毕业论文(编辑修改稿)
相关推荐
弃了传统 DCS中的相对集中现场控制,而将其化整为零,分散于各种现场仪表与设备,并通过现场总线构成相应的控制回路,实现了真正的 分散控制。 系统组成 温度控制系统的设计 主要是通过实验的需要选择硬件,然后将选择的硬件组成控制系统。 系统结构框图和方框图如图 31所示。 在以 PLC 控制为核心,加热炉为基础的温度自动控制系统中, PLC 将加热炉温度设定值与温度传感器的测量值之间的偏差经 PID
//指令 LCD_RW=0。 //写入 LCD_E=1。 //允许 LCD_DB=dat。 delay_n10us(10)。 //实践证明,我的 LCD1602 上,用 for 循环 1 次就能完成普通写指令。 LCD_E=0。 delay_n10us(10)。 //实践证明,我的 LCD1602 上,用 for 循环 1 次就能完成普通写指令。 } 盐城工学院课程设计说明书( 2020) 10
这些方法从根本上说,可以归为三类 :基于图像分割的方法,基于灰度级一彩色变换的 方法,基于滤波的方法。 实际上,大多数新的处理方法都是以这三类方法为基础演变而来的。 本文的研究内容是基于第一种方法 — 基于图像分割的方法。 这种方法的原理图如下 : 这种方法的关键技术是对图像进行有效的分割。 因此本文把研究重点放在了对图像进行有效的分割上面。 伪彩色图像处理技术的来源和应用
10 ( 3— 2) 式中 ku —— 第 K 次采样值。 N—— 一周期 T 内的采样点数。 ku —— k= 0 时的采样值。 2Nu —— k= N/2 时的采样值。 求出积分值 S 后,应用式 (31)可求得幅值。 车辆与动力工程学院课程设计说明书 9 图 31 半周积分算法原理示意图 半周积分算法的特点: 半周积分算法计算简单、算法本身具有一定的滤波作用。 但是
起来,价格适中的太阳能热水器完全可以成为大多数居民的家用耐用品之一。 2020 年太阳能热水器的销售额近 300 亿元,为社会提供就业机会近 60 多万个。 尤其在 2020 年 5 月,太阳能热水器进入家电下乡产品行列,享受政府补贴 13%。 所以太阳热水器在未来将有 6 更大的发展空间。 (4)太阳能热水器发展的技术环境 上世纪 70 年代末起,我国开始研发与生产太阳能集热器。 1979 年
数整定方便、结构改变灵活、适应性强、鲁棒性强等特点,在工业控制上应用较广。 早期的 PID 控制是由气动或液动、电动硬件仪表实现的模拟 PID 控制器。 二十世纪七十年代以来,随着计算机技术飞速发展和应用普及,由计算机实现的数字 PID 控制不仅简单地将PID控制规律数字化,而且可以进一步利用计算机的逻辑判断功能,开发出多种不同形式的 PID 控制算法,使得 PID 控制的功能和实用性更强