食品化学肉类保鲜(编辑修改稿)内容摘要:
对酶活性的影响 对食品干制的基本要求 二、食品干制的基本原理 影响湿热传递的因素 (1) 食品表面积 (2) 温度 (3) 空气流速 (4) 空气的干燥程度或空气温度 (5) 大气压力和真空 (6) 蒸发和温度 (7) 时间与温度 食品结合水 (1) 化学结合水 (2) 物理化学结合水分 a、吸附结合水分 b、渗透和结构结合水分 (3) 机械结合水分或游离水分 a 毛细管水分 b 湿润水分 干制过程中食品水分状态的变化 食品干制过程的特性 (1) 干燥曲线 干制过程中食品绝对水分和干制时间的关系曲线。 干燥时,食品水分在短暂的平衡后,出现快速下降,几乎时直线下降,当达到较低水分含量时(第一临界水分),干燥速率减慢,随后达到平衡水分。 (2) 干燥速率曲线 随着热量的传递,干燥速率很快达到最高值,然后稳定不变,此时为恒率干燥阶段,此时水分从内部转移到表面足够快,从而可以维持表面水分含量恒定,也就 是说水分从内部转移到表面的速率大于或等于水分从表面扩散到空气中的速率。 (3) 食品温度曲线 初期食品温度上升,直到最高值 ——湿球温度,整个恒率干燥阶段温度不变,即加热转化为水分蒸发所吸收的潜热(热量全部用于水分蒸发)。 在降率干燥阶段,温度上升直到干球温度,说明水分的转移来不及供水分蒸发,则食品温度逐渐上升。 干制过程中潮湿物料的湿热传递 (1) 物料给湿过程 W=C(P物饱 -P空蒸 ) 760/B o W ——食品表面水分蒸发强度(千克/平方米 小时) o P物饱 ——和潮湿物料表面湿球温度相应的饱和水蒸气压(毫米汞柱) o P空蒸 ——热空气的水蒸气压(毫米汞柱) o B ——大气压(毫米汞柱) o C ——潮湿物料表的给湿系数(千克/平方米 小时 毫米汞柱),可按C=0 .0229+0 .0174V进行计算(V为空气流速,米/秒),空气垂直流向液面时C值加倍。 (2) 物料导湿过程或内部水分的扩散过程 a、导湿性 ⅰ 水分梯度 若用 W 绝 表示等湿面湿含量或水分含量( kg/kg 干物质),则沿法线方向相距 Δ n 的另一等湿面上的湿含量为 W 绝 + Δ W 绝 ,那么物体内的水分梯度 grad W 绝 则为: grad W 绝 = lim ( Δ W 绝 / Δ n ) = W 绝 / n Δ n 0 W 绝 —— 物体内的湿 含量,即每千克干物质内的水分含量(千克) Δ n—— 物料内等湿面间的垂直距离(米) ⅱ 导湿性引起的水分转移量可按照下述公式求得: i 水 = K γ 0 ( W 绝 / n ) = K γ 0 W 绝 千克 / 米 2 小时 i 水 —— 物料内水分转移量,单位时间内单位面积上的水分转移量( kg/kg干物质 米2小时) K—— 导湿系数(米 2 小时)。食品化学肉类保鲜(编辑修改稿)
相关推荐
Fiber Spinning) 它是由现有的一些合成纤维所采用的纤维生产工艺发展而成。 将较纯的植物蛋白强碱溶液,用泵通过纺丝头(每个纺丝头上有数千个细小孔)时入酸凝固池,得到由细纤维丝密集并成的纤维束。 然后将它拉伸、漂洗、着色、调味和粘结成团,即可成为仿肉类制品。 ( 2)蒸汽组织化法( Steam Texturization) 蛋白质颗粒在蒸汽环境下加热,然后让压力快速释放
SFE 或联机 SFE:不仅需要了解 SFE,还要了解色谱条件,而且样品提取物不适用于其他方法分析,其优点主要是消除了提取和色谱分析之间的样品处理过程,并且由于是直接将提取物转移到色谱柱中而有可能达到最大的灵敏度。 三、超临界流体萃取在食品工业的应用实例 超 临界流体萃取在食品中的应用,主要是近 20 年的事情。 在食品加工中,几乎都采用 CO2作为萃取剂。 植物油的萃取(大豆、向日葵、可可
ⅲ III、表面活性剂必须既在邻接内、外两相溶液中具有低溶解度,又能优先促进所需要的溶解物种穿过液膜进行渗透。 ⅳ IV、必须控制表面活性剂的浓度和用量,因为它们对液膜的厚度、强度、选择性和乳状液膜珠滴的直径等有直接影响。 ( 2)液膜包裹的内相体系 选择内相的条件是: a、可 以根据它和进料混合物中所有组分的混溶性、或根据它和较易穿膜渗透的化合物的选择混合溶性来择用。 b
生所需的酶 ( 2)确定工业规模大量生产的一系列工程和工艺条件,以及培养罐的形式、大小、通气条件、温度和 pH 值的控制等。 图:通过改变培养基类型、酸碱度、氧气浓度和温度,研究人员现了生产某种酶的微生物的最佳生长条件。 三、酶的提取、分离和纯化 微生物酶制剂的工业提取步骤大致如下: 如果是胞内酶,则首先要分离收集其菌体,使之破碎,将酶提取至液相中,此为出发酶液; 如果是胞外酶
系数 λ ,可用 δ/λ 值表示之。 IV、杀菌设备的型式:罐头食品在回转式杀菌设备内杀菌,是处于不断旋转状态中,因而其传 热速度比在静置式杀菌设备内杀菌时迅速,也比较均匀。 除以上各种因素外,其它还有很多的影响因素,如装罐量、顶隙度、真空度、罐内汁液和固形物的比例,食品的成熟度、食品原料的加工方法、加热时食品的特性(如有无颗粒体沉积于罐底),加热前罐内温度的分布情况、杀菌锅的装罐量
生命科学相关的科技。 一、基因工程技术 基因工程技术溯源 1973 年美国斯坦福大学和旧金山大学医学院 Coken 和 Boyer 两位科学家成功地实现了 DNA分子重组试验,揭开了基因工程发展序幕。 1985 年转基因鱼的问世,标志基因工程在食品工业应用的开端,基因工程食品由此走上了历史舞台。 第二代基因工程 基因操作主要多以分子群殖 (molecular cloning) 为手段