食品化学电磁波技术(编辑修改稿)内容摘要:

生命科学相关的科技。 一、基因工程技术 基因工程技术溯源 1973 年美国斯坦福大学和旧金山大学医学院 Coken 和 Boyer 两位科学家成功地实现了 DNA分子重组试验,揭开了基因工程发展序幕。 1985 年转基因鱼的问世,标志基因工程在食品工业应用的开端,基因工程食品由此走上了历史舞台。 第二代基因工程 基因操作主要多以分子群殖 (molecular cloning) 为手段,达成大量复制一段指定的核酸片段。 在此过程中,所有的核酸片段均分别被植入载体 (质体 plasmid),然後一起轉入宿主细胞,在宿主中大量复制,放大这些核酸片段的数目。 同样,因为一个宿主细胞只能让一种核酸大量复制 (one plasmid, one cell),因此所得到的大量核酸,是均质核酸分子。 基因工程一包括 DNA 重组、表达和克隆,是生物工程核心内容。 基因工程在食品工业中的应用 ( 1)亚酸制剂方面应用 酶的传统来源是动物脏器和植物种子,后来随着发酵工程的发展,逐渐出现了以微生物为主要酶源的格局。 近年来,由于基因工程技术的发展,更使我们可以按照需要来定向改造酶,甚至创造出自然界从未发现的新酶种。 现在,蛋白酶、淀粉酶、脂肪酶、糖化酶和植物酶等均可利用基因工程技术进行生产(如表中所列)。 表 1 应用于食品工业的酶制剂 酶 用途 蛋白酶 乳酪生产啤酒去浊,浓缩鱼胨,制酱油,制蛋白胨 脂肪酶 鱼片脱脂,毛皮脱脂等 淀粉酶 麦芽糖生产.醇生产等 纤维素酶和半纤维素酶 用于乙醇生产,植物抽提物的澄清和将纤维素转化为糖 糖化酶 酶法制糖 果胶酶 用于葡萄酒和果汁的澄清及减少其粘度 植酸酶 可将饲料中的植酸盐降解成无机磷类物质 葡萄糖异构酶 制造高果糖浆 ( 2)改造食品原材料 DNA 重组技 术和细胞融合技术相结合,培育出高产、抗病、抗虫、生长快、抗逆、高蛋白的基因改良植物,对食品工业具有重要意义。 各种抗病毒植株,黄瓜花叶病毒、马铃薯 X 病毒和 Y 病毒,抗病虫害长颈南瓜和抗虫害转基因土豆。 转基因动物源食品转基因动物尚未达到高等转基因植物的发展水平,但人们仍设法用它来表达高价值蛋白。 ( 3)改革传统的发酵工业 发酵工业关键是优良菌株的获取,除选用常用的诱变、杂交和原生质体融合等传统方法外,还与基因工程结合,大力改造菌种,给发酵工业带来生机。 而作为基因工程和蛋白质工程,为便 于目的表达产品的大量工业化生产,最后大多选用微生物进行目的基因表达而生产出 “基因工程菌 ”,再通过发酵工业大量生产各种新产品。 微生物的遗传变异性及生理代谢的可塑性都是其他生物难以比拟的,故其资源的开发有很大的潜力。 美国的 Biotechnica 公司克隆了编码黑曲霉的葡萄糖淀粉酶基因,并将其植入啤酒酵母中,在发酵期间,由酵母产生的葡萄糖淀粉酶将可溶性淀粉分解为葡萄糖,这种由酵母代谢产生的低热量啤酒不需要增加酶制剂,且缩短了生产时间。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。