经济数学微积分映射与函数(编辑修改稿)内容摘要:
tX t t (a ) (b) 图 平稳时间序列与非平稳时间序 列图 • 进一步的判断 :检验样本自相关函数及其图形 定义随机时间序列的 自 相 关 函 数( autocorrelation function, ACF) 如下 : k=k/0 自相关函数是关于滞后期 k的递减函数 (Why?)。 实际上 ,对一个随机过程只有一个实现(样本),因此,只能计算 样本自相关函数 ( Sample autocorrelation function)。 • 一个时间序列的样本自相关函数定义为: nttkntkttkXXXXXXr121 ,3,2,1k 易知 , 随着 k的增加 , 样本自相关函数下降且趋于零。 但从下降速度来看 , 平稳序列要比非平稳序列快得多。 kr kr 1 1 0 k 0 k ( a ) ( b ) 图 平稳时间序列与非平稳时间序列样本相关图 • 注意 : 确定样本自相关函数 rk某一数值是否足够接近于 0是非常有用的,因为它可 检验对应的自相关函数 k的真值是否为 0的假设。 Bartlett曾证明 :如果时间序列由白噪声过程生成 , 则对所有的 k0, 样本自相关系数近似地服从以 0为均值 , 1/n 为方差的正态分布 , 其中 n为样本数。 也可检验对所有 k0, 自相关系数都为 0的联合假设 , 这可通过如下 QLB统计量进行: mkkLB knrnnQ12)2( 该统计量近似地服从自由度为 m的 2分布( m为滞后长度)。 因此 :如果计算的 Q值大于显著性水平为 的临界值,则有 1的把握拒绝所有 k(k0)同时为 0的假设。 例 : 表 Random1是通过一随机过程(随机函数)生成的有 19个样本的随机时间序列。 表 一个纯随机序列与随机游 走序列的检验 序号 R andom1 自相关系数 kr (k=0,1, … 17) LBQ R andom2 自相关系数 kr (k=0,1, … 17) LBQ 1 K=0, 1 . 0 0 0 2 K=1, 0 . 0 5 1 3 K=2, 0 . 3 9 3 4 K=3, 0 . 1 4 7 5 K=4, 0 . 2 8 0 6 K=5, 0 . 1 8 7 7 K=6, 0 . 3 6 3 8 K=7, 0 . 1 4 8 9 K=8, 0 . 3 1 5 10 K=9, 0 . 1 9 4 11 K=10, 0 . 1 3 9 12 K=11, 0 . 2 9 7 13 K=12, 0 . 0 3 4 14 K=13, 0 . 1 6 5 15 K=14, 0 . 1 0 5 16 K=15, 0 . 0 9 4 17 K=16, 0 . 0 3 9 18 K=17, 0 . 0 2 7 19 • 容易验证: 该样本序列的均值为 0,方差为。 • 从图形看: 它在其样本均值 0附近上下波动,且样本自相关系数迅速下降到 0,随后在 0附近波动且逐渐收敛于 0。 ( a ) ( b ) 0 . 60 . 40 . 20 .00 .20 .40 .62 4 6 8 10 12 14 16 18R A N D O M 10 . 80 . 40 . 00 . 40 . 81 . 22 4 6 8 10 12 14 16 18R A N D O M 1 A C• 由于该序列由一随机过程生成,可以认为不存在序列相关性,因此 该序列为一白噪声。 • 根据 Bartlett的理论: k~N(0,1/19), 因此任一 rk(k0)的 95%的置信区间都将是 : ]4 4 9 ,4 4 9 []19/,19/[],[ 0 2 2 ZZ• 可以看出 :k0时, rk的值确实落在了该区间内,因此可以接受 k(k0)为 0的假设。 • 同样地 , 从 QLB统计量的计算值看,滞后 17期的计算值为 ,未超过 5%显著性水平的临界值 ,因此 ,可以接受所有的自相关系数k(k0)都为 0的假设。 • 因此 , 该随机过程是一个平稳过程。 • 序列 Random2是由一随机游走过程 Xt=。经济数学微积分映射与函数(编辑修改稿)
相关推荐
xx x x; 3 . 41d1xx; 4 . 2d3 si nxx; 5 . d2 sin c o s 5xxx ; 6 . 11d11xxx ; 7 . 1d1xxxx; 8 . 243d( 1 ) ( 1 )xxx . 三、求下列不定积分(用以前学过的方法): 1. 3d1xxx; 2 . 1 c o sds inxxxx; 3
0 1 2 1 10 1 2• 消费方程是恰好识别的; • 投资方程是过度识别的; • 模型是可以识别的。 •下列演示中采用了 19781996年的数据,与教科书不同。 ⒉ 数 据 年份 Y I C G 1 9 7 8 3 6 0 6 1 3 7 8 1 7 5 9 469 1 9 7 9 4 0 7 4 1 4 7 4 2 0 0 5 595 1 9 8 0
xxx.___ ___ ___ _)112)(11( 2 xxxx.__ ___ __ __ _5 )3)(2)(1( 3 nnnnn练 习 题 ._ _ _ _ _ _ _ _ _ _23 2240 xxxxxx.__ __ __ __ __)12( )23()32( 503020 xxxx二、求下列各极限 : )21...41211(
ba,lg bay 讨论: 通过计算得 ,10881ii ,18 36812 ii,81iiy .122lg81iii y将他们代入方程组( 3)得 . 0 8,1 2 21 0 81 8 3 6baba解这方程组,得 .8 9 6 ,0 4 3 4 kbma., km因此所求经验公式为 . 1 0 3 ey二
xxx故 02202222)1(2112)1( nnnnnnnxnx.)22)(12()1(022 nnnnnx)11( x一、 选择题 : 1 . 下列级数中 , 收敛的是 ( ). (A) 11nn; (B) 11nnn; (C) 13 21n n; (D)1)1(nn. 2 . 下列级数中 , 收敛的是 ( )
量 ,不能与很小(大)的数混淆,零是唯一的无穷小的数; ( 2) 无穷多个无穷小的代数和(乘积)未必是无穷小; ( 3) 无界变量未必是无穷大 . 思考题 在自变量的同一过程中 ,无穷大的倒数为无穷小。 反之,无穷小的倒数是否一定为无穷大 . 思考题解答 不一定 . 0 是无穷小,但其倒数不存在 . 所以课本上表示为 “非零的无穷小的倒数是 无穷大” . 一、填空题 : 1 . 凡无穷小量皆以