图形的相似_全章教案含配套课时练习(编辑修改稿)内容摘要:

定定理。 (二 )过程与方法 培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法 1 与全等三角形判定方法( SSS)的区别与联系,体验事物间特殊与一般的关系。 (三)情感态度与价值观 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。 〔教学重点与难点〕 教学重点 :两个三角形相似的判定引例﹑判定方法 1 教学难点: 探究判定引例﹑判定方法 1的过程 教学过程 新课引入: 1. 复习相似多边形的定义及相似多边形相似比的定义 相似三角形的定义及相似三角形相似比的定义 2. 回顾全等 三角形的概念及判定方法( SSS) 相似三角形的概念及判定相似三角形的思路。 提出问题: 如图 27 21,在 ∆ABC中,点 D是边 AB 的中点, DE∥ BC, DE交 AC于点 E , ∆ADE与 ∆ABC有什么 关系。 分析:观察 27 21易知 AD=12AB , AE=12AC ,∠ A=∠ A,∠ ADE=∠ ABC,∠ AED=∠ ACB,只需引导学生证得 DE=12BC 即可,学生不难想到过 E作 A B D E C F 21 EF∥ AB。 ∆ADE∽ ∆ABC,相似比为 12。 延伸问题: 改变点 D在 AB上的位置,先让学生猜想 ∆ADE与 ∆ABC仍相似,然后再用几何画板演示验证。 归纳:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 探究方法: 探究 1 在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的 k倍,度量这两个三角形的对应角,它们相等吗。 这两个三角形相似吗。 分析:学生通过度量,不难发现这两个三角形的对应角都相等,根据相似三角 形的定义,这两个三角形相似。 (学生小组交流) 在学生小组交流的基础上引导学生思考证明探究所得结论的途径。 分析:作 A1D=AB,过 D作 DE∥ B1C1,交 A1C1于点 E ∆A1DE∽ ∆A1B1C1。 用几何画板演示 ∆ABC平移至 ∆A1DE的过程  A1D=AB, A1E=AC, DE=BC∆A1DE≌ ∆ABC  ∆ABC∽ ∆A1B1C1 归纳:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。 A B C A1 B1 C1 D E A B C A1 B1 C1 22 符号语言: 若11ABAB11BCBC11CA kCA ,则 ∆ABC∽ ∆A1B1C1 运用提高: 1. P47练习题 1( 2)。 2. P47练习题 2( 2)。 课堂小结:说说你在本节课的收获。 布置作业: 1. 必做题: P55习题 27 2题 2( 1), 3( 1)。 2. 选做题: P55习题 27 2题 4, 5。 3. 备选题: 如图, E是平行四边形 ABCD的边 BC 的延 长线上的一点,连结 AE交 CD 于 F,则图中共有相似三角形( ) A、 1对 B、 2对 C、 3对 D、 4对 设计思想: 本节课主要是探究两个三角形相似的判定引例﹑判定方法 1,因此在教学设计中突出了“探究”的过程,先让学生利用刻度尺、量角器等作图工具作静态探究,然后教师再应用“几何画板”等计算机软件作动态探究,从而给学生以深刻的实验几何的数学学习体验。 此外,本课教学设计在引导学生知识重构的维度上重视应用“比较” “类比” “猜想”的教学法,促使学生尽可能进行“有意义”的而非“机械、孤立”的认知建构,并在这一建构过程中发展合情推理能力。 23 配套课时练习 1.△ ABC与△ DEF全等,则其相似比是 2.已知△ ABC∽△ DEF,写出其对应角及对应边关系是。 3.平行与三角形一边的直线和其他两边相交,所构成的三角形与原三角形 4.如图,在△ ABC中, DE∥ BC,△ ADE∽ ,∠ ADE= , DE/BC= , 若 AE=3,EC=2,则△ ADE与△ ABC的相似比为 5.如图, CD∥ EF∥ AB, AC, BD相交于点 O,则图中与△ OEF相似的三角形为。 6.已知△ ABC∽△ DEF, AB: DE=1: 2,则△ ABC 与△ DEF 相似比是 ;△ DEF 与△ ABC的相似比是 7.如图,△ ABC∽△ AEF,且相似比 3: 2, EF=8cm,则 BC= cm 8.如图,△ ABC中, DE∥ BC, MN∥ AB,则图中与△ ABC相似的三角形有( ) A. 1 个 B. 2 个 C. 3 个 D. 4个 9.如图, AD⊥ AC, BC⊥ AC, AB与 CD相交于点 E,过 E点作 EF⊥ AC,交 AC于 F,写出图中所有的相似三角形,并说明理由。 10.求作△ DEF使他与已知△ ABC相似且相似比 3: 2。 24 11.如图,△ ABC中, DE∥ BC, DE=1, BC=3, AB=6,则 AD的长为( ) A. 1 B. 2 C. 1. 5 D. 2. 5 12.如图,在△ ABC 中, AB=3AD, DE∥ BC, EF∥ AB,若 AB=9, DE=2,则线段 FC 的长度 . 13.如图,已知 AE=BF, FH∥ EG∥ AC, FH、 EG分别交边 BC所在的直线于点 H、 G。 若点 E、 F在边 AB上,试判断 EG+FH=AC是否成立,并说明理由。 参考答案: 1: 1; ∠ A=∠ D,∠ B=∠ E,∠ C=∠ F, AB/DE=BC/EF=AC/DF 相似; △ ABC,∠ B, AD/AB=AE/BC, 3: 5 △ OCD,△ OAB; 1: 2, 2: 1; 12; C △ ABC∽△ AEF,△ CDA∽△ CEF,平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;△ BCE∽△ ADE,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似 作图略; 1 B; 1 FC=14; 1成立, 理由:因为 FH∥ EG∥ AC,所以 BE/AB=EG/AC, BF/AB=FH/AC 25 所以 BE/AB+ BF/AB = EG/AC + FH/AC 即: (BE+BF)/AB=(EG+FH)/AC 又因为 AE=BE,所以 BE=AF,所以 (AF+BF)/AB=1 所以 (EG+FH)/AC=1,即 EG+FH=AC 26 27. 2. 1 相似三角形的判定 第二课时 教学目标: (一 )知识与技能 掌握三组对应边的比相等的两个三角形相似的判定定理; 掌握两组对应边的比相等且它们夹角相等的两个三角形相似的判定定理。 (二 )过程与方法 会运用“三组对应边的比相等的两个 三角形相似”及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的方法进行简单推理。 (三 )情感态度与价值观 从认识上培养学生从特殊到一般的方法认识事物,从思维上培养学生用类比的方法展开思维; 通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。 教学重点: 掌握两个判定定理,会运用两个判定定理判定两个三角形相似 教学难点: 探究两个三角形相似的条件; 运用两个三角形相似的判定定理解决问题。 教学过程 新课引入: 复习两个三角形相似的判定方法 1与全等三角形 判定方法( SSS)的区别与联系: 如果两个三角形的三组对应边的比相等,那么这两个三角形相似。 (相似的判定方法 1) 回顾探究判定引例﹑判定方法 1的过程 探究两个三角形相似判定方法 2的途径 提出问题: 利用刻度尺和量角器画 ∆ABC与 ∆A1B1C1,使∠ A=∠ A1,11ABAB 和11ACAC 都等于给定的值 k,量出它们的第三组对应边 BC和 B1C1的长,它们的比等于 k吗。 另外两组对应角∠ B与∠ B1,∠ C与∠ C1是否相等。 27 (学生独立操作并判断) 分析:学生通过度量,不难发现这两个三角形的第三组对应边 BC 和 B1C1的比都等于 k,另外两组对应角∠ B=∠ B1,∠ C=∠ C1。 延伸问题: 改变∠ A或 k值的大小,再试一试,是否有同样的结论。 (利用刻度尺和量角器,让学生先进行小组合作再作出具体判断。 ) 探究方法: 探究 2 改变∠ A或 k值的大小,再试一试,是否有同样的结论。 (教师应用“几何画板”等计算机软件作动态探究进行演示验证,引导学生学习如何在动态变化中捕捉不变因素。 ) 归纳:如果两个三角形的两组对应边的比相等 ,并且相应的夹角相等,那么这两个三角形相似。 (定理的证明由学生独立完成) 符号语言: 若∠ A=∠ A1,11ABAB =11ACAC =k,则 ∆ABC∽ ∆A1B1C1 辨析: 对于 ∆ABC与 ∆A1B1C1,如果11ABAB =11ACAC ,∠ B=∠ B1, 这两个三角形相似吗。 试着画画看。 (让学生先独立思考,再进行小组交流,寻找问题的所在,并 集中展示反例。 ) 应用新知: 例 1:根据下列条件,判断 ∆ABC与 ∆A1B1C1是否相似,并说明理由: ( 1)∠ A= 1200, AB=7cm, AC=14cm, ∠ A1= 1200, A1B1= 3cm, A1C1=6cm。 ( 2)∠ B= 1200, AB=2cm, AC=6cm, ∠ B1= 1200, A1B1= 8cm, A1C1=24cm。 A B C A1 B1 C1 28 分析 : ( 1)11ABAB =11ACAC =73 ,∠ A=∠ A1= 1200  ∆ABC∽ ∆A1B1C1 ( 2)11ABAB =11ACAC =14 ,∠ B=∠ B1= 1200 但∠ B与∠ B1不是 AB ﹑ AC﹑ A1B1 ﹑ A1C1的夹角, 所以 ∆ABC与 ∆A1B1C1不相似。 运用提高: P47练习题 1( 1)。 P47练习题 2( 1)。 课堂小结:说说你在本 节课的收获。 布置作业: 必做题: P55习题 27 2题 2( 2), 3( 2)。 选做题: P56习题 27 2题 8。 备选题: 已知零件的外径为 25cm,要求它的厚度 x,需先求出它的 内孔直径 AB,现用一个交叉卡钳( AC和 BD 的长相等) 去量(如图),若 OA: OC=OB: OD=3, CD=7cm。 求此零 件的厚度 x。 设计思想: 本节课主要是探究相似三角形的判定方法 2,由于上节课已经学习了探究 两个三角形相似的判定引例﹑判定方法 1,而本节课内容在探究方法上又具有一定的相似性,因此本教学设计注意方法上的“新旧联系”,以帮助学生形成认知上的正迁移。 此外,由于判定方法 2的条件“ 相应的夹角相等” 在应用中容易让学生忽视,所以教学设计采用了“小组讨论+集中展示反例”的学习形式来加深学生的印象。 29 配套课时练习 1.如果两个三角形的三组对应边 ,那么这两个三角形相似。 2.下列命题中正确的有( ) ⑴△ ABC的边长分别是 5 cm、 6 cm、 8 cm,△ DEF的边长分别 2. 5 cm, 3 cm, 4 cm,则△ ABC∽△ DEF。 ⑵过△ ABC的边。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。