复习:1、以圆锥曲线焦点弦ab为直径作圆,与相应的准线l有内容摘要:
步骤的关键,本题容易误认为 a0,b0,从而错解。 双曲线 222 akyx 中,与虚轴平行的弦的两端点和双曲线 顶点所张的两角互补,求 k。 018022, 知由已知 P A MMPA ,`再设)2(, 22020 akyx 知又由已知0)( ctgaxytgaxytg 0000 , 则)1(20220 yax 01 tgtg tgtg x y o A` P Q A M 解题指导:本题应注意双曲线的对称性,所张两角若互补,则它们的 半角即互余,再利用三角公式就可以求 k出的值。 解:如图,设双曲线上弦一端点为 ),(00 yxP平行于虚轴 ( y轴)的弦 PQ交 x轴于 M点,设 A`, A为双曲线 两顶点,则 A`( a,0),A(a,0) ( 1)、( 2)联立,得 k=1 导评:这本是等轴双曲线的一个性质,此题是将这性质反过 来改编而成的。 )(||),(||)(||,||).(,),().)(0,(),0,(),0,0(1020102012100222212222aexMFaexMFMaceaexMFaexMFMMMFMFyxMbaccFcFbabyax点在双曲线左支上时当点在双曲线右支上时并且当如图点半径点的焦称为双曲线的线段对双曲线上任一点右焦点为左焦点为对于一、双曲线的补充性质 双曲线的焦点半径 1),0,0(1,1),()0,0(1202022222020002222bxxayybabxaybyyaxxyxMbabya。复习:1、以圆锥曲线焦点弦ab为直径作圆,与相应的准线l有
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。
用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。