110kv变电站设计方案内容摘要:

定电压 高压 /中压 /低压(kV) 空载损耗(kW) 损耗( kw) 空载电流% 阻抗电压( % ) 高中 高低 中低 高中 高低 中低 SSPSL1 75000/110 100/100/100 121// 76 580 510 450 第四章 电气主接线 电气主接线是发电厂、变电站电气设计的首要部分,也是构成电气系统的主要部分。 电气主接线是由电气设备通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线。 由于本设计的变电站有三个电压等级,所以在设计的过程中首先分开单独考虑各自的母线情况,考虑各自的出线方向。 论证是否需要限制短路电流,并采取什么措施,拟出几个把三个电压等级和变压器连接的方案,对选出来的方案进行技术和经济综合比较,确定最佳主接线方 案。 1. 对电气主接线的基本要求 对电气主接线的基本要求,概括地说包括可靠性、灵活性和经济性三方面 可靠性 安 全可靠是主接线的首要任 务,保证供电可靠是电气主接线最基本的要求。 电气主接线的可靠性不是绝对的。 所以在分析电气主接线的可靠性时,要考虑发电厂和变电站的地位和作用、用户的负荷性质和类别、设备的制造水平及运行经验等诸多因素。 灵活性 电气主接线应能适应各种运行状态,并能灵活的进行运行方式的转换。 灵活性包括以下几个方面: ( 1) 操作的灵活性 ( 2) 调度的灵活性 ( 3) 扩建的灵活 性 经济性 在设计主接线时,主要矛盾往往发生在可靠性和经济性之间。 通常设计应满足可靠性和灵活性的前提下做到经济合理。 经济性主要通过以下几个方面考虑: ( 1) 节省一次投资。 如尽量多采用轻型开关设备等。 ( 2) 占地面积少。 由于本变电站占用农田所以要尽量减少用地。 ( 3) 电能损耗小。 电能损耗主要来源变压器,所以一定要做好变压器的选择工作。 另外主接线还应简明清晰、运行维护方便、使设备切换所需的操作步骤少,尽量避免用隔离开关操作电源。 2. 电气主接线的基本原则 电气主接线的基本原则是以设计任务书为依据,以国家经济建设的 方针、政策、技术规定、标准为准则,结合工程实际情况,在保证供电可靠、调度灵活、满足各种技术要求的前提下,兼顾运行、维护方便,尽可能的节省投资,就地取材,力争设备组件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 3. 待建变电站的主接线形式 110kV 侧 方案(一) : 采用单母线接线 考虑 到 110kV 侧有两条进线 ,因而可以选用单母线接线。 其优点: 接线简单清晰、设备少、投资少、运行操作方便、且有利于扩建。 缺点是: ( 1)当母线或母线隔离开关检修或发生故障时,各回路必须在检修和 短 路时事故来消除之前的全部时间内停止工作,造成经济损失很大。 ( 2)引出线电路中断路器检修时,该回路停止供电。 ( 3)调度不方便,电源只能并列运行,不能分裂运行,并且线路侧发生故障时,有较 大的短路电流。 方案 (二):采用单母线分段带旁路接线 断路器经过长期运行和切断数次短路电流后都需要检修。 为了能使采用单母线分段的配电装置检修断路器时,不中断供电,可增设旁路母线。 单母线分段带有专用的旁路断路器的旁路母线接线极大的提高了可靠性,但是这也增加了一台断路器和一条母线的投资。 方案(三):双母线接线 优点: ( 1)供电可靠,通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不至于供电中断,一组母线故障后能迅速恢复供电,检修任一组的母线隔离开关时只停该回路。 ( 2)扩建方便,可向双母线的左右任何一个方向扩建,均不影响 两组母线的电源和负荷的平均分配,不会引起原有回路的停电,以致连接不同的母线段,不会如单母线分段那样导致交叉跨越。 ( 3)便于试验,当个别回路需要时单独进行试验时可将该架路分开,单独接至一组母线上。 缺点: ( 1)增加一组母线和每回路需增加一组母线隔离开关,投次大。 ( 2)当母线故障或检修时,隔 离开关作为倒换操作电器容易误操作,为了避免隔离开关误操作需在隔离开关和断路之间装设连锁装置。 对于 110kV 侧来说,因为它要供给较多的一类、二类负荷、因此其要求有较高的可靠性。 对比以上三种方案,单母线接线供电可靠性、灵活性最差,不符合变电所的供电可靠性的要求;双母线接线供电可靠性高,但无旁路母线检修断路器时需要停电而且双母线接线复杂,使用设备多、投资较大;采用单母线分段带旁路的电气接线可将 I、 II 类负荷的双回电源线不同的分段母线上,当其中一段母线故障时,由另一段母线提供电源,从而可保证供电可靠性;而且 带旁路可以在检修断路器时对用户进行供电。 故经 过综合考虑采用方案(二)。 35kV 侧 方案(一) : 采用单母线接线 优点: 接线简单清晰、设备少、投资少、运行操作方便、且有利于扩建。 缺点: 可靠性、灵活性差,母线故障时,各出线必须全部停电。 方案(二):单母线分段 优点: ( 1)母线发生故障时,仅故障母线停止供电,非故障母线仍可继续工作,缩小母线故 障影响范围。 ( 2)对双回线路供电的重要用户,可将双回路接于不同的母线段上,保证对重要用户的供电。 缺点: 当一段母线故障或检修时,必须断开在该段上的全 部电源和引出线,这样减少了系统的供电量,并使该回路供电的用户停电。 方案(三):采用单母线分段带旁路接线 优点 : ( 1)可靠性、灵活性高 ( 2)检修线路断路器时仍可向该线路供电 缺点: 投资大,经济性差 单母线接线可靠性低,当母线故障时,各出线须全部停电,不能满足 I、 II 类负荷供电性的要求,故不采纳;将 I、 II 类负荷的双回电源线不同的分段母线上,当其中一段母线故障时,由另一段母线提供电源,从而可保证供电可靠性;虽然带有旁路断路器的单母线分段也能满足要求,但其投资大、经济性能差,故 采用方案(二)单母线 分段接线。 10kV 侧 方案(一) : 采用单母线接线 优点: 接线简单清晰、设备少、投资少、运行操作方便、且有利于扩建。 缺点: 可靠性、灵活性差,母线故障时,各出线必须全部停电。 方案(二):单母线分段 优点: (1) 母线发生故障时,仅故障母线停止供电,非故障母线仍可继续工作,缩小母线故障影响范围。 (2) 对双回线路供电的重要用户,可将双回路接于不同的母线段上,保证对重要用户的供电。 缺点: 当一段母线故障或检修时,必须断开在该段上的全部电源和引出线,这样减少了系统的供电量,并使该回路供电的 用户停电。 单母线接线可靠性低,当母线故障时,各出线须全部停电,不能满足 I、 II 类负荷供电性的要求,故不采纳;将 I、 II 类负荷的双回电源线不同的分段母线上,当其中一段母线故障时,由另一段母线提供电源,从而可保证供电可靠性。 故采用方案(二 )。 综合以上三种 主接线所 选的接线 方式,画 出主接线图。 见附图 41。 A CA C 第五章 短路电流计算 1. 短路电流计算的目的和条件 短路是电力系统中较常发生的故障。 短路电流直接影响电器的安全,危害主 接线的运行。 为使电气设备能承受短路电流的冲击,往往需选用大容量的电气设备。 这不仅增加了投资,甚至会因开断电流不能满足而选不到符合要求的电气设备。 因此要求我们在设计变电站时一定要进行短路计算。 短路电流计算的目的 在发电厂和变电站的设计中,短路计算是其中的一个重要内容。 其计算的目的主要有以下几个方面: ⑴ 电气主接线的比较。 ⑵ 选择导体和电器。 ⑶ 在设计屋外高型配电装置时,需要按短路条件校验软导线的相间和相对地的安全距离。 ⑷ 在选择继电保护方式和进行整定计算时,需以各种短路时的短路电流为依据。 ⑸ 接地装置的设计,也需要用短路电流。 短路电流计算条件 基本假定 ⑴ 正常工作时,三相系统对称运行; ⑵ 所有电源的电动势相位、相角相同; ⑶ 电力系统中的所有电源都在额定负荷下运行; ⑷ 短路发生在短路电流为最大值的瞬间; ⑸ 不考虑短路点的电弧阻抗和变压器的励磁电流; ⑹ 除去短路电流的衰减时间常数和低压网络的短路电流外,组件的电阻都略去不计; ⑺ 组件的计算参数均取其额定值,不考虑参数的误差和调整范围; ⑻ 输电线路的电容忽略不计。 一般规定 ⑴ 验算导体和电器动稳定、热稳 定以及电器开断电流所用的短路电流,应本工程设计规划容量计算,并考虑远景的发展计划; ⑵ 选择导体和电器用的短路电流,在电气连接的网络中,应考虑具有反馈作用的异步电动机的影响和电容补偿装置放电电流的影响; ⑶ 导体和电器的动稳定、热稳定以及电器的开断电流,一般按三相短路验算。 2. 短路电流的计算步骤和计算结果 计算步骤 在工程计算中,短路电流其计算步骤如下: 选定基准电压和基准容量,把网络参数化为标么值; 画等值网络图; 选择短路点; 按短路计算点化简等值网络图,求出组合阻抗; 利用实用曲线算出短路电流。 计算各回路电抗 (取基准功率 Sd = 100MVA Ud=UaV) 根据上面所选的参数进行计算 : X1= X2= Xx2avUSd= 802115100= X3= X4= 1/200 (UK12%+ UK31%- UK23%)NdSS = 1/200 (+ - ) 75100 =0. 15 X5= X6= 1/200 (UK12%+ UK23%- UK31%)NdSS 342线路侧1中压侧高压侧低压侧低压侧 = 1/200 (+ - ) 75100 = X7= X8= 1/200 (UK23%+ UK31%- UK12%)NdSS = 1/200 (+ - ) 75100 = 由于两台变压器型号完全相同,其中性点电位相等,因此等值电路图可化简为 X13=X1/2= X10=X3/2= X11=X5/2= X12=X7/2=计算各短路点的最大短路电流 ( 1) K1 点短路时 XΣ *= X13= I” *= I S∞ *= 1/ XΣ *= 1/ = 短路次暂态电流: I”S= IS∞ = I”S *Id= 1153100= ( kA) 短路冲击电流: = I”S= = ( kA) 全电流最大有效值: = I”S = =( kA) 短路电流容量: Sd”= 3 I”S Un=(MV) (2) K2点短路时 XΣ *= X13+X10+X11=++= I” *= I S∞ *= 1/ XΣ *= 1/= 短路次暂态电流: I”S= IS∞ = I”S *Id= 373100=( kA) 短路冲击电流: = I”S= = ( kA) 全电流最大有效值: = I”S = =( kA) 短路电流容量: Sd”= 3 I”S Un= (MV) (3) K3点短 路时 XΣ *= X13+X10+X12=+= I” *= I S∞ *= 1/ XΣ *= 1/= 短路次暂态电流: I”S= IS∞ = I”S *Id= =( kA) 短路冲击电流: = I”S= = ( kA) 全电流最大有效值: = I”S = =( kA) 短路电流容量: Sd”= 3 I”S Un=(MV) 从计算结果可知,三相短路较其它短路情况严重,它所对应的短路电流周期分量和短路冲击电流都较大,因此,在选择电气设备时,主要考虑三相短路的情况。 第六章 配电装置及电气设备的配置与选择 1. 导体和电气设备选择的一般条件 导体和电气设备选择是电气设计的主要内容之一。 尽管电力系统中各种电气设备的作用和工作条件并不一样,具体选择方法也不完全相同,但对它们的基本要求确是一致的。 电器设备要能可靠地工作,必须按正常工作条件进行选择,并按 短路状态来效验热稳定和动稳定。 正确地选择设备是使电气主接线和配电装置达到安全、经济运行的重要条件。 在进 行设备选择时,应根据工程实际情况,在保证安全、可靠的前提下,积极而稳妥地采用新技术,并注意节约投资,选择合适的电气设备。 一般原则 应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展的需要; 应按当地环境条件校核; 选择导体时应尽量减少品种; 应力求技术先进和经济合理; 扩建工程应尽量使新老电器型号一致; 选用的新产品,均应具有可靠的试验数据,并经正式鉴定合格 技术条件 选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。 长期工作条件 (一)电压 选用电器允许最高工作电压 Umax 不得低于该回路的最高运行电压 Ug,即 Umax≥ Ug (二)电流 选用的电器额定电流 Ie 不得低于所在回路在各种可能运行方式下的持续工作电流Ig,即 Ie≥ Ig 由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。 高压电器没有明确的过载能力,所以在选择额定电流时,应满足各种可能运行方式下回路持续工 作电流的要求。 所选用电器端子的允许荷载,应大于电器引线在正常运行和短路时的最大作用力。 短路稳定条件 (一)校验的一般原则 ( 1) 电器在选定后按最大可能通过的短路电流进行动、热稳定校验,校验的短路电流一般取三相短路时的短路电流。 ( 2) 用熔断器保护的电器可不验算热稳定。 ( 3) 短路的热稳定条件 Itt≥ Qd 式中 Qdt— 在计算时间 tjs秒内,短路电流的热效应( kA •s) It — t 秒内设备允许通过的热稳定电流有效值( kA) 2 2 t — 设备允许通过的热稳定电流时间 ( s) 校验短路热稳定所用的计算时间 tjs 按下式计算:。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。