徐宇宁同志在全市工程建设领域突出问题专项治理工作总结暨整治规范建设工程招投标市场动员大会上的讲话内容摘要:

生活数学观,是相对于科学数学观而言的。 它是指儿童常常是通过探索他们自己的生活世界和精神世界来了解并获得数学学习的,是通过自己的大量的实践活动来获得数学知识的,是在许许多多的问题解决过程来发展自己的数学认知能力。 儿童数学观,是相对于成人数学观而言的。 它首先表现在数学学习的层次有差异,其次表现在数学活动的过程有差异,最后表现在构建数学知识的方式有差异 现实 数学观,是相对于理论数学观而言的。 现实的数学实际上是由不同个体在不同的环境中的不同生活经历所形成的,用以支持自己在社会生活中的行为决策和行为方式的,它是进一步研究数学科学的就要基础。 数学的特点 ——其一,数学的对象是由人类发明或创造的;其二,数学的创造源于对现实世界和数学世界研究 22 的需要;其三,数学性质具有客观存在的确定性;其四,数学是一个发展的动态体系。 对小学数学的再认识 ——包括三个数学观,( 1)生活数学观,( 2)儿童数学观,( 3)现实数学观 传统小学数学课程的特征 ——包括五个方面:( 1)课程开发 ——学术中心;( 2)课程组织 ——学科取向;( 3)课程结构 ——螺旋式;( 4)课堂教学 ——记忆为主;( 5)学业评价 ——笔纸考试为主。 小学数学课程目标,包括小学开设数学的重要性,数学学科对小学生特殊的教育作用和共同的教育作用,以及学生通过学习数学应当能达到的某种要求等。 传统小学数学内容结构 ——包括七个方面:认数与计算、量与计算、几何初步知识、代数初步知识、统计初步知识、 比与比例、应用题。 现代小学数学内容结构 ——经过整合,以 “适当精选算术内容,适当增加代数、几何的初步知识,适当渗透一些集合、函数、统计等数学思想 ”为指导思想,选定的内容包括六个方 23 面:认数与计算、量与计算、几何初步知识、代数初步知识、统计初步知识、应用题。 1 选择小学数学课程内容的主要依据 ——包括依据义务教育的性质和需要、依据现代科学技术发展的趋势和社会发展的实际需要、依据小学生的年龄特征和接受能力。 1 选择小学数学课程内容的基本原则 ——包括基础性原 则、可接受性与发展性相结合的原则、统一性与灵活性相结合的原则、教育作用原则。 1 小学数学课程内容的编排原则 ——包括正确处理数学知识的逻辑顺序与儿童心理发展顺序的关系、适当分段,螺旋上升,由浅入深,循序渐进的原则、突出基本概念和基本规律,加强各部分知识的纵横联系和配合、简明性原则、渗透性原则。 1 小学数学课程内容呈现的基本要求 ——包括内容的表述要注意其可读性、内容的呈现要图文并茂,注意其直观性、内容的组织要有利于学生对数学知识的再发现。 1 国际上小学数学课程内容的组织与呈现的发展趋势——在选择上表现出 “切近儿童生活 ”的价值取向、在呈现上表现 24 出 “强化过程体验 ”的价值取向、在组织上表现出 “注重探究发现 ”的价值取向。 1 世界范围内对小学数学课程内容改革的特点 ——包括注重问题解决、注重数学运用、注重数学思想与数学交流、注重信息处理、注重数学体验、注重数学活动。 1 我国小学数学课程内容结构变革的特点 ——包括课程内容的安排体系由单一式发展为综合式、从课程内容的发展上来分,有螺旋式、直线式、过渡式三种、以例 题、练习相结合的体例展示教学内容、教材的呈现根据教学内容和学生的基础作不同的处理。 1 我国小学数学课程内容在呈现方式上的改革 ——体现价值的主体性、体现知识的现实性、体现学习的探究性、体现经历的体验性、体现过程的开放性、体现呈现的多样性。 1 常见的认知学习类型 ——常见的认知学习类型包括接受学习与发现学习、知识学习、技能学习和问题解决学习。 在小学数学学习中存在三种互相渗透与相互支持的不同的知识:陈述性(也称概念性)知识、程序性(也称自动 化 25 技能)知识和解决问题的策略性知识。 相对应的,则存在着三种不同类型的数学学习,它们是小学数学学习中的主要形态。 2 技能性知识 ——技能性知识主要指运算技能,运算技能性知识的形成分为三个阶段:认知阶段、联结阶段、自动化的阶段。 2 小学数学的学习任务 ——包括三类:记忆操作类的学习、理解性的学习、探索性的学习。 2 迁移的基本形式与过程 ——迁移主要有两种形式:第一是同化。 即将原有经验运用到同类情境中去,从而将新事物纳入已有的经验系统。 第二是顺应( 也称异化)。 即将已有经验有选择地运用到异类情境中去,使已有的经验对当前的学习发生影响,并使原有经验获得改组,构成一个新的认知结构。 2 迁移的基本类型 ——迁移主要有两种基本的类型,即正迁移和负迁移(也称干扰)。 所谓正迁移,实际上就是指一种学习对另一种学习产生正面的和积极的影响,这种影响将促进当前有意义学习的发生。 所谓负迁移,实际上就是指一种学习对另一种学习产生负面的干扰作用,这种影响将阻碍当前有意义学习的发生。 26 2 儿童获得数学概念能力的发展 ——包括从获得并建立初 级概念为主发展到逐步能理解并建立二级概念、概念的获得以 “概念形成 ”为主逐渐发展到 “概念同化 ”为主、从认识概念的自身属性逐步发展到理解概念间的联系、数学概念的建立受经验的干扰逐渐减弱、数、形的分离发展到数、形的结合五个方面。 2 儿童数学技能的发展 ——包括依赖结构完满的示范导向发展到依赖对内部意义的理解、从外部的展开的思维发展到内部的压缩的思维、数感和符号感的逐步提高,支持着运算向灵活性、简洁性与多样性的发展三个方面。 2 儿童空间知觉能力的发展 ——包括方位感是逐步建立的、空间概念的建立逐渐从外显特征的把握发展到从本质特征的把握、空间透视能力是逐步增强的三个方面。 2 儿童数学问题解决能力的发展 ——包括语言表述阶段、理解结构阶段、多极推理能力的形成、符号运算阶段四个方面。 2 儿童数学学习能力的水平差异 ——包括具有个性特征的数学能力类别、在结构类型中所表现出的能力差异、在数 27 学学习风格中的所表现出的能力差异。 发现学习 ——源自于 “启发学习 ”,就是指学生不是从教师的讲述中得到一个概念或原则,而是在教师组 织的学习情境中,学生通过自己的头脑亲自获得知识的一种方法。 它的理论基础是布鲁纳的认知发现理论,最早起源于完形说,即格式塔( Gestalt)理论。 学生在学习时要掌握发现教学模式的基本流程及其特征,即创设情境 ——提出假设 ——检验假设 ——总结运用;它的特征有以下几点:第一,发现教学模式注重知识的发生、发展过程,提倡让学生自己发现问题,分析问题,解决问题,主动获取知识;第二,发现教学模式强调学生学习的主动性,强调学生学习的认知过程,重视认知结构、知识结构和学生的独立思考在学习中的重要作用;第三,发现教学模式强调教师 的作用不是提供现成的知识,而是促进学生积极地去思考并参与帮助学生知识的获得。 掌握发现教学模式在小学数学教学中的运用以及它的主要优缺点。 3 小学数学概念教学的主要策略 ——小学数学概念教学通常分为引入概念、建立、巩固和运用概念等三个阶段。 3 发展儿童数学概念获得能力的基本途径 ——构建数学概念能力的要素,包括学生已有的生活经验和数学概念、数 28 学思维能力、数学的语言能力;构建数学概念能力的培养,包括重视表象的过渡、加强数学交流、促进数学思维。 3 三、简答题 小学数学教育的基本任务 包括( 1)以培养数学素养为基本追求,即以促进学生的终身可持续发展为学校数学教育的基本出发点,将小学数学教育定位于:不追求将所有的儿童都培养成为伟大的数学家,而是培养他们最基本的数学素养。 数学素养的基本内涵包括要使学生懂得数学的价值,对自己的数学能力有自信心,有解决现实数学问题的能力,学会数学交流,以及学会数学的思想方法。 数学素养的基本特征包括发展性、过程性和实践性;( 2)以发展数学思维能力为基本的目标,包括观察与比较、分析与综合、抽象与概括、判断与推理;( 3)以将数学运用到现实情境为基本能力,包括学会用数学的思想来考察现实与构建普遍知识与特殊情境的联系。 首先,数学教学应该引导儿童观察和认识周围世界最简单的数量关系,建立情境与一般法则的联系,从而激发他们超越这些规则并能用数学语言来进行表达的动机,真正使用数学知识成为学生生活和思 29 维的组成部分,其次,在普通的数学规则和特殊情境之间,其唯一桥梁是学生有意识在现实情境下进行数学思维。 小学数学课程的变革 应从三个方面来理解,一是国际小学数学课程的发展,要把握ICMI 时代国际小学数学课程的发展和二战后国际小学数学课程的发展;二是我国小学数学课程的发展,要把握我国数学教育的几次变革,包括课程标准和教学大纲之关系,小学数学课程内容变革的阶段性成果;三是 21 世纪我国小学数学新课程,要掌握变革的内容,即素质教育的理念落实到课程标准之中、突破学科中心、改善学生的学习方式、评价建议具有更强的指导性和操作性、课程标准为教材的多样性和教学创造性提供了空间。 小学数学课程目标的改革与发展 应从两个方面来理解,国际 小学数学课程目标的改革与发展和我国小学数学课程目标的历史变革。 其中注重问题解决、注重数学 30 应用、注重数学交流、注重数学思想方法、注重培养学生的态度情感与自信心是世界主要发达国家和地区的数学课程目标特点;新中国建立后小学数学课程目标的特点,一是十分强调实用性目的,即 “基础知识和基本技能 ”、 “解决简单的实际问题 ”等,二是部分强调学科目的,如 “培养运算能力,发展逻辑思维能力和空间观念 ”,三是强调积极的学习态度,如 “培养学生良好的个性品质和初步的辩证唯物主义的观点 ”。 新《课程标准》对小学数学课程的要求 新《课程标准》颁发后,将负数、方位的认识、几何图形的平移、旋转和对称变换和简单的概率知识纳入小学数学课程中,它的最大特点是其多纬度的内容结构,这种多纬度的内容结构,可以从三个方面来解读:( 1)从知识的领域切入;( 2)从数学学习的目标切入;( 3)从数学活动的素养切入,包括数感、符号感、空间观念、统计观念、应用意识、推理能力。 新课程标准对小学数学课程内容呈现的基本要求 31 第一学段( 13 年级)教材的呈现要求:本学段的学生以形象思维为主,在教材编写时,应采用多种多样的形式 (如图片、游戏、卡通、 表格、文字等 ),直观形象、图文并茂、生动有趣地呈现素材,提高学生的学习兴趣,满足多样化的学习需求;第二学段( 46年级)教材的呈现方式:与第一学段相比,本学段的教学内容出现了更多数量的文字和符号,所以教材的呈现方式应在图文并茂的同时,逐渐增加数学语言的比重,可以运用学生感兴趣的图片、游戏、表格、文字等形式,直观形象地呈现教材的内容。 再创造学习 源于弗赖登塔尔的观点,即学生学习过程中的若干步骤的最重要的特征还在于 “再创造 ”,它包含两层含义:其一,学生的学习并不是简单地接受,并不是一个被动地 获取数学家们已经发现和创造的那些概念、命题、法则、方法等等,而应具有实践性活动的特征,是学生自己的一种 “创造 ”过程 ——数学化;其二,这种实践性的活动并不是要求学生去模仿或重复数学家们发现并创造数学的过程,而是要求学生将那些已经被发现或创造的数学作为实践性活动的任务,让他们自己去 “再发现 ”和 “再创造 ”。 再创造学 32 习理论的理论基础是弗赖登塔尔创立的 “数学现实 ”教育思想。 再创造教学模式的基本流程就是 “数学化 ”的过程。 数学化的过程可先后分两个层次:水平数学化和垂直数学化,即首先要将现实问题转化到数学问题,即要发现现实 问题中的数学成分,并对这些成分做符号化处理,这是水平数学化。 当问题一旦转化成或多或少具有数学性质的问题时,再从具体问题转化到抽象概念和方法,建立数学问题与数学形式系统之间的关系,这一过程是垂直数学化的过程。 概括起来是:呈现问题情境 ——提出问题 ——分析问题 ——发现规律 ——反思修正 ——解决问题。 它的特征:第一,“发现法 ”是处于较低层次的一种 “创造 ”活动,而 “再创造 ”是一。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。