激光光散射技术及其应用(20xx2026内容摘要:

[DVS] to the alkaline micellar solution at room temperature. Unexpectedly, the PEOHEMADEA triblock proved to bemuchless reactive towardDVSthan the twoPEOGMADEAtriblocks, and an excess of DVS was 美国布鲁克海文 仪器公司技术服务中心 13 required to prepare shell crosslinked (SCL) micelles using the former triblock. The resulting SCL micelles exhibited reversible swelling behavior on varying the solution pH. At low pH, the DEA cores became protonated and hence hydrophilic. The effect of varying the block position and the [DVS]/[GMA] molar ratio on the structural stability and pHdependent (de)swelling of theSCLmicelles was studied. Longer DEA blocks and lower [DVS]/[GMA] molar ratios led to increased swellability, as expected. Finally, these SCL micelles can serve as nanoreactors for the synthesis of gold nanoparticles. The basic DEA residues in the cores of the SCL micelles were first protonated using HAuCl4, and then the electrostatically bound AuCl4 anions were reduced to nanoparticles of elemental gold using NaBH4 at neutral pH. The goldloaded SCL micelles exhibited excellent longterm colloid stability. 2. 囊泡几何形状、大小和囊壁厚度的表征 微胶囊是通过成膜物质将囊内空间和嚢外空间隔离开以形成特定几何结构的物质,其内部可以是可以填充的,也可以使中空的。 微胶囊技术在现代科技与日常生活中有重要作用,如药物、染料、纳米微粒和活细胞等都可以被包埋形成多种不同功能的微胶囊。 然而,传统技术制备的中空微胶囊,其几何形状、大小和嚢壁厚度都无法精确控制,所得微胶囊的分散性和稳定性不佳,限制了微胶囊基 本物理性能如膜结构、通透性、力学强度的研究。 利用动静态光散射技术再结合核 壳模型,可以对微胶囊的几何形状、 粒径 大小 、分子量大小 和囊壁厚度进行表征,进而 人为 对微胶囊的囊壁组成和结构进行精确的控制与调控,从而调控微胶囊的各种性能和功能。 [参考文献 ] Polymeric Vesicle Permeability: A Facile Chemical Assay Giuseppe Battaglia,*,† Anthony J. Ryan,‡ and Salvador Tomas*,‡ Department of Engineering Materials, The Kroto Research Institute, UniVersity of Sheffield, Broad Lane,Sheffield, ., S3 7HQ, and Department of Chemistry, The UniVersity of Sheffield,Sheffield, ., S3 7HF。 Langmuir 2020, 22, 49104913 ABSTRACT: We present a simple method to characterize vesicles and determine, at the same time, the membrane permeability to specific molecules. The method is based on encapsulating highly hydrophilic 3,3’,3’’phosphinidyrisbenzenesulfonic acid (PH) into vesicles and subsequently monitoring its reaction with 5,5’dithiobis2nitrobenzoic acid (DTNB). We tested the method by measuring the membrane permeability of vesicles formed from a series of poly(ethylene oxide)copolybutylene oxide (EB) copolymers and egg yolk phosphatidylcholine. We found that the experimental data are in good agreement with calculations based on Fick’s 美国布鲁克海文 仪器公司技术服务中心 14 first law. We therefore quantified the DTNB permeability across vesicle membranes, finding that polymeric EB membranes have a more selective permeability toward polar molecules pared to phospholipids membranes. 脂质体是一种定向药物载体,属于靶向给药系统的一种新剂型。 它可以将药物粉末或溶液包埋在直径为纳米级的微粒中,这种微粒具有类细胞结构,进入人体内主要被网状内皮系统吞噬而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。 脂质体是由磷脂、胆固醇等为膜材 包合而成。 这两种成分不但是形成脂质体双分子层的基础物质,而且本身也具有极为重要的生理功能。 用磷脂与胆固醇作脂质体的膜材时,必须先将类脂质溶于有机溶剂中配成溶液,然后蒸发除去有机溶剂,在器壁上形成均匀的类脂质薄膜,此薄膜是由磷脂与胆固醇混合分子相互间隔定向排列的双分子层所组成。 按结构和粒径,脂质体可分为单室脂质体、多室脂质体、含有表面活性剂的脂质体。 按性能,脂质体可分为一般脂质体(包括上述单室脂质体、多室脂质体和多相脂质体等)、特殊性能脂质体、热敏脂质体、 PH 敏感脂质体、超声波敏感脂质体、光敏脂质体 和磁性脂质体等。 按荷电性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 利用动静态光散射技术再结合核 壳模型,可以对 脂质体的分子层结构进行表征,例如 几何形状、大小和 双分子层 厚度进行表征,进而人为 对脂质体 的 双分子层 组成和结构进行精确的控制与调控,从而调控 脂质体 的各种性能和功能。 [参考文献 ] Size, Stability, and Entrapment Efficiency of Phospholipid Nanocapsules Containing Polypeptide Antimicrobials LILIAN M. WERE,†,167。 BARRY D. BRUCE,167。 , P. MICHAEL DAVIDSON,†,167。 ANDJOCHEN WEISS*,†,167。 Department of Food Science and Technology, 2605 River Road, Department of Biochemistry andCellular and Molecular Biology, Walter Life Sciences, and Food Safety Center of Excellence,The University of Tennessee, Knoxville, Tennessee 37996。 J. Agric. Food Chem. 2020, 51, 8073−8079 8073 美国布鲁克海文 仪器公司技术服务中心 15 ABSTRACT: The effect of lipid position [phosphatidylcholine (PC), phosphatidylglycerol (PG), and cholesterol] on size, stability, and entrapment efficiency of polypeptide antimicrobials in liposomal nanocapsules was investigated. PC, PC/cholesterol (70:30), and PC/PG/cholesterol (50:20:30) liposomes had entrapment efficiencies with calcein of 71, 57, and 54% with particle sizes of 85, 133, and 145 nm, respectively. Coencapsulation of calcein and nisin resulted in entrapment efficiencies of 63, 54, and 59% with particle sizes of 144, 223, and 167 nm for PC, PC/cholesterol (70:30), and PC/PG/cholesterol (50:20:30), respectively. Coencapsulation of calcein and lysozyme yielded entrapment efficiencies of 61, 60, and 61% with particle sizes of 161, 162, and 174 nm, respectively. The highest concentration of antimicrobials was encapsulated in 100% PC liposomes. Nisin induced more calcein release pared to lysozyme. Results demonstrate that production and optimization of stable nanoparticulate aqueous dispersions of polypeptide antimicrobials for microbiological stabilization of food products depend on selection of suitable lipidantimicrobial binations. 的 表征 聚电解质可用作食品、化妆品、药物和涂料的增稠剂、分散剂、絮凝剂、乳化剂、悬浮稳定剂、胶粘剂,皮革和纺织品的整理剂,土壤改良剂,油井钻探用泥浆稳定剂,纸张增强剂,织物抗静电剂。 近年来,聚电解质在药物载体研究方面有着诸多应用。 聚电解质组装体不但可以为药物、基因、显像诊断试剂及功能纳米微粒提供负载场所,赋予组装体药物和基因传输和显像诊断功能,而且由于组装体的内部及表面携带多种反应性官能团(如 — OH, —COOH 等),既可直接结合生物酶、细胞、抗体、药物等,又可便于化学修饰以实现不同的 功能与需求。 同时, 聚电解质 组装体还具有 对溶剂 、离子环境、温度和浓度 敏感 的特点。 聚电解质具有高分子溶液的特性,例如粘度、渗透压和光散射等。 由于它带有电荷,并且这三方面的性质又不同于一般的高分子,不能用上述溶液的特性与分子量的关系式来测算分子量。 例如, 在无盐条件下 聚电解质溶液的 Kc/R值 与 q2值 不成线性关系 , 只有在适当浓度的盐溶液中才呈线性关系(图 1)。 在动态光散射表征方面, 在无盐条件下 单分散的 聚电解质溶液 在动态光散射粒度分布上会呈现多峰分布(通常有大峰存在), 只有在加入适当的盐溶液的情况下,才会屏蔽掉这个大 峰,粒度分布呈现出聚电解质的真实分布情况。 所以测定聚电解质的Static light scattering results for charged supramolecular nanoparticles without (open circles) and with added salt (filled circles) , 美国布鲁克海文 仪器公司技术服务中心 16 分子量时,必须把聚电解质溶解在一定浓度的盐溶液中。 另外, 聚电解质 组装体还具有 对溶剂 、离子。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。