端面机械密封装置的热传递毕业论文外文翻译内容摘要:

计算结果和测量结果的比较只能在动环上进行。 图 18 中显示出数值模拟和实验研究中温度分布沿转子的变化情况。 该转子的顶面坐标值为负,而正值所对应的点在环的外表面上,如图 18 所示。 可以预见温度的最大值出现在接触面上。 而四周表面上的温度从接触点温度逐渐降低到环底面上一个较小的温度值。 可以看出,当靠近接触面几毫米时,转子外表面上的实验分布减少。 因此在环的边缘温度是不连续的,这表明存在测量误差。 这个问题是由于漏油图 设备 英文文献翻译 而导致在转子上部和静态盘半径之间形成弯液面,也就是低估了温度源。 为了进行比较,在计算温度之前测量的耗散功率已经被引入到数值模拟中(图18)。 对于较低的雷诺数值,观察到的模拟值与实验值一致。 在第二种情况下,模拟提供了一个比所测值更高的温度分布。 这种差异可以解释为耗散功率测量时的不确定性。 另一条曲线已被添加到该图形上。 事实上,我们观察到,如果把错误点除去,外表面上的实验温度分布,可以准确地用二阶多项式函数表示,如图 18 所示。 为了预测转子上的全局努塞尔数,有必要进行一些计算以获得热量通量和环内径上的温度。 为此,转子的传导方程 如下: 01 2222  zTrTrTr ( 24) 假定环的外表面绝热: 0rT at r=R0 (25) 此外,我们先前表示,外表面的温度可以用二阶多项式函数准确地表示: T(z)=az2+bz+c at r=R0 (26) 这方程的一个特解是: 图 18. 转子上的温度分布比较( Cw=, Pr=750) 图 19. 转子上努塞 尔数 比较 英文文献翻译 cbzazRrRraRzrT  220202 )]1()[l n(),( 0 (27) 转子内径上顶热通量的平均值是: )1(),(120200 RRRaRkdzzRrTkHq rHrav   (28) 平均温度是: cbHaHRRRRaRdzzRTHT Hav   23)]1()[l n(),(1 22020200 (29) 因此,知道了拟合曲线( 26)的系数和进油口的温度,从平均热通量( 28)和平均温度( 29)我们可以很容易地得到全局努塞尔数( 16)。 对于不同的无量纲流速值,努塞尔数的实验值列于图 19,它是雷诺数的函数。 由于进油温度随着测试黏度的变化而变化,因此用公式( 18)计算,普朗特数的影响是无效的。 实验结果与公式( 22)给出的数字值相比较,模拟值与实验值相一致,平均差异接近于理论值的15%。 比较表明 ,当与雷诺数的影响比较时,无量纲流速只对努塞尔数有较小的影响。 雷诺数传热的相关性得到了实验的验证。 表面温度在机械密封中是一个关键参数。 它的值很大程度上取决于周围密封液的传热,这就是努赛尔数的特点。 这一结论在文献中找不到相类似的。 为此,一个基于 CFD 的数值模拟系统将用来研究内压端面机械密封。 密封的液体是一种高粘度矿物油,可以产生层流结构。 这种层流结构类似于由一个侧壁包围的静态盘和旋转盘之间的层流。 动量边界层的厚度反比于雷诺数的平方根。 可以证实比离心作用所引起的自然流速高很多的冷却流率是没用 的,部分油液直接被带了出去。 根据模拟数值,我们提出了旋转环和静态盘上全局努塞尔数之间的相关性。 努塞尔数正比于雷诺数的平方根,但对普朗特数的决定性较低。 冷却流只对传热有影响,但影响不大。 此外,由于热源位于接触区,努塞尔数也是流体速率和物质热导率的函数。 关系(增加或减少函数)取决于流动方向和固体中的温度分布。 如果油液从固体中的最热点流到最冷点,那么较高的导电性是不利的,反之有利。 这是值得注意的,因为端面机械密封一般是由碳化硅等材料制成的环,优良的热导体,和热导率大约低于 10倍的碳环组成。 当前实验的结果 要求从碳环定向流向碳化硅环。 先前在端面机械密封中观察到局部努塞尔数沿密封件有很大差异。 英文文献翻译 通过与实验结果比较,理论上的相关性得到了验证。 通过红外热成像原理,实验元件上的温度分布得到测定,与温度曲线非常一致。 英文文献翻译 英文文献原文 International Journal of Thermal Sciences 48 (2020) 781–794 Heat transfer in a mechanical face seal No235。 l Brui232。 re ∗, Benoit Modolo Abstract This paper presents a numerical analysis of heat transfer in an experimental inner pressurized mechanical face seal using CFD. The configuration is similar to the laminar flow between a static and a rotating disc bounded by a corotating sidewall. A series of simulations allow the authorsto propose a correlation for the global Nusselt number for the rotating ring and the static disc. The Nusselt number is a function of the Reynolds number of the flow and the Prandtl number, as well as of the ratio of the fluid and material thermal conductivities. This last conclusion arises fromthe fact that the heat source is located in the contact between the rotor and the stator and depends on the temperature distribution in the solids. The cooling oil flow appears not to affect the Nusselt number. The numerical results were validated by parison with measurements carried out onthe experimental seal by means of an infrared camera.2020 Elsevier Masson SAS. All rights reserved. Keywords : Convective heat transfer。 Infrared thermography。 Rotor–stator。 Mechanical Face Seal。 CFD (Computational Fluid Dynamic) 1. Introduction Mechanical face seals are used to seal pressurized fluids in rotating machines such as pumps, pressors and agitators, where pressure, temperature and velocity conditions prevent the use of elastomeric seals. These seals are basically posed of a rotating part mounted on to the shaft and a stationary part fixed to the housing. The two parts are maintained in contact by the action of springs and of the pressurized fluid (Fig. 1). Good operating conditions are achieved when the seal faces are 英文文献翻译 partially separated by a thin lubricating fluid film (a fraction of micrometer), avoiding wear on the faces while limiting leakage rate to an acceptable value. According to Lebeck [1], the behaviour and performance of a mechanical face seal are influenced as much by the thermal behaviour of the seal as by any other factor. Indeed, the dissipated power due to viscous friction and asperities contacts in the sealing interface leads to a significant increase in temperature in the fluid film and in the contiguous solids [2,3]. Consequently, the lubrication conditions are modified because of fluid viscosity variation, thermal distortions of the seal rings and possible phase change. A possible effect of these variations is a drastic increase in leakage rate or seal failure. This is why there have been many studies dealing with thermal effects in recent decades. A brief review is presented in [4]. The main objective of these papers was to measure or determine by a theoretical approach the temperature of the seal faces. In his book, Lebeck [1] made a prehensive description of heat transfer in mechanical face seals, presented here in Fig. 1. The heat transfer mechanisms are quite plicated since the seal is surrounded by a plex environment. Because of this feature of the environment, the heat transfer paths are multiple, leading to heat flow putation plications. Nevertheless, the major part of the heat generated in the seal is generally transferred by convection to the sealed fluid in the neighbourhood of the contact. This assumption was confirmed by the simplified analysis of Buck [5] and the numerical study of Bruiere et al. [6]. This showed that, for a typical configuration, the thermally influenced zone has a length of approximately twice the contact width (. the difference in contactradii) on either side of the sealing interface. Convection around the seal rings is thus of importance in the thermal behaviour of the Fig. 1. Example of mechanical face seal 英文文献翻译 seal. Taylor flow. He proposed the use of the formulas obtained by Tachibana et al. [8] and Gazley [9] in the study of heat transfer。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。