一元二次方程巩固练习内容摘要:
有两横两竖的彩条,横、竖彩条的宽度比为 3: 2,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度(精确到 )。 解:设横彩条的宽度为 3x,竖彩条为 2x, 根据题意如图所示,可列方程为 2 30 3x + 2 20 2x - 4 3x 2x= 30 20 整理方程为 12x2- 130x + 75 =0 解得 答:横彩条的宽为 3x ≈,竖彩条的宽为 2x ≈. 5. 青山村种的水稻 2020年平均每公顷产 7200kg, 2020年平均每公顷产 8450kg,求水稻每公顷产量的年平均增长率. 解:设水稻每公顷。一元二次方程巩固练习
相关推荐
律: ① 一般地,当一元二次方程一次项系数为 0时( ax2+c=0),应选用直接开平方法;若常数项为 0( ax2+bx=0),应选用因式分解法;若一次项系数和常数项都不为 0 (ax2+bx+c=0) ,先化为一般式,看一边的整式是否容易因式分解,若容易,宜选用因式分解法,不然选用公式法;不过当二次项系数是 1,且一次项系数是偶数时,用配方法也较简单。 ② 公式法虽然是万能的
以趣导学 问题: 1、为什么同学做的纸盒大小不同。 与什么 有关。 实验操作,以趣导学 若确定小正方形边长为5厘米,你还能 计算哪些量。 实验操作,以趣导学 若折成的无盖纸盒的底面积是 450平方 厘米,那么纸盒的高是多少。 X 实验操作,以趣导学 解 :设高为 xcm,可列方程为 ( 40- 2x)(25 2x)=450 解得 x1=5, x2= 2、练习反馈,巩固新知 若已知纸片长与宽之比为
2y y 2 = 1 ( x + 2) 2 = 4 一元二次方程的一般式: 把方程 (X2)(2X+3)=(2X1)2的两边展开整理成 ________________, 把 X2+5X=150整理 ________________, 以上的方程都可以化成下面的形式: 2X2+(3)X+7= 0 X2+5X+(150)= 0 aX2+bX+c=0 (a≠0) 一元二次方程的一般形式 任何一个关于
∴ 原方程的根是 虽然 , 此种类型的方程在初二上学期已学习过 , 但由于相隔时间比较长 , 所以有一些学生容易犯的类型错误应加以强调 , 如在第一步中 . 需强调方程两边同时乘以最简公分母 . 另外 , 在把分式方程转化为整式方程后 , 所得的一元二次方程有两个相等的实数根 , 由于是解分式方程 , 所以在下结论时 , 应强调取一即可 , 这一点 , 教师应给以强调 . 例 2 解方程 分析
值叫做这个一元二次方程的 根。 一元二次方程化为一般形式 ax2+bx+c=0 (a≠0)后,如果它的左边的二次三项式能因式分解,那么就可以用 因式分解法 解这个方程。 首页 小结 一元二次方程 例 解方程: (1) x2- 3 x = 0 解题过程 首页 (2) 2 x2+13x - 7= 0 解题过程 巩固练习 (1) x2 = 2x 答案 例 解方程: (1) x2- 3 x = 0
golden section),点 C叫做线段 AB的 黄金分割点 ,AC与 AB的比称为 黄金比 . 一元二次方程的根与系数: 根的判别式: b24ac 练习: • 方程 2x2+3x- k=0根的判别式是 ;当 k 时,方程有实根。 • 方程 x2+2x+m=0有两个相等实数根,则m=。 • 关于 x的方程 x2(2k1)x+(k3)=无论 k为任何实数 ,总有两个不相等的实数根 . •