全等三角形的识别[上学期]华师大版内容摘要:
A)不成立。 例题讲解 例 1:如图,四边形 ABCD中,AD=BC, AB=DC, 试说明△ ABC≌ △ CDA A B C D 解: 在△ ABC和 △ CDA中 AD=BC (已知) AB=DC (已知) AC=AC (公共边) ∴ △ ABC≌ △ CDA ( SSS) 夯实基础 , 才能有所突破 …… ? COBADCBADCOBADECBAD夯实基础 , 才能有所突破。全等三角形的识别[上学期]华师大版
相关推荐
∠ AFC=∠ BFC 创造全等条件 在△ AFC与△ BFC中 AF=BF (已知) ∠ AFC=∠ BFC (已证) CF=CF (公共边) 列齐全等条件 ∴ △ AFC≌ △ BFC ( SAS) 得出结论 ∴ AC=BC △ AFC △ BFC 初中数学资源网 探究 3 已知:点 A、 E、 F、 C在同一条直线上 , AD=CB, AD∥ CB, AE=CF. 求证: EB∥ DF A
∠ ACB= ∠ DBC, (已知 ) 又 ∵ BC为公共边且对应相等, ∴ △ ABD ≌ △ ACD. ( .) 思 考 如图,如果两个三角形有两个角及其中一个角的对边分别对应相等,那么这两个三角形是否一定全等。 你的结论是________________________________ _____ _______________________________________.
对应顶点; AB和 A1 B AC和 A1C BC和 B1C1分别是对应边; ∠ A和 ∠ A1 、 ∠ B和 ∠ B ∠ C和 ∠ C1分别是对应角。 请学生用自己的语言叙述图 2,图 3:全等三角形、对应顶点、对应角以及有关数学符号。 探索: 从以上的图形和概念中能得出全等三角形的哪些性质。 两个三角形的三组对应边相等、三组对应角相等。 B C A E F D 例: 已知△ ABC≌ △
第三根木条上, 那么构成的三角形 的形状、大小就完全确定。 从上述实验可以看出,当三角形的三边的长度确定时,这个三角形的形状和大小就完全确定了,这个性质叫做三角形的 稳定性 ,也是三角形 特有的性质。 它在日常生活中有着广泛的应用。 想一想 三角形稳定性在生活中的应用 A B D C 如图:已知 AB=AC, BD=DC 说说 ∠ B=∠ C的理由 解 :在△ ABD和△ ACD中 AB=AC(