高二数学抛物线的简单几何性质二内容摘要:
垂足分别为 M 、 N. ∴ AB FA FB =12x x p ∵ 直线 AB 的方程为 c o t2pxy 由2c ot 22pxyy px 消去 y 并整理得 2 2 2( 2 c o t ) 0x p p x p ∴ AB = 2222 c o t 2 s in ppp 5 课外思考题 : 1. AB 是抛物线 x = y2的一条焦点弦,且| AB | =4 ,则 AB 的中点到直线 x + 1= 0 的距离为 ( ) ( A )25 ( B ) 2 ( C ) 3 ( D )411 D 已知点),( 11 yxA、),( 22 yxB在抛物线)0(22 ppyx上,且 AB 过抛物线的焦点 F ,则21 xx( ) A 、42p B 、2p C 、-42p D 、2p C 6 学习小结 : 刚才发现的结论 , 坐标法起着重要作用 . 设而不求。高二数学抛物线的简单几何性质二
相关推荐
夹角与 b、 c 夹角相等。 对吗 ? 逆命题: 若 a、 c夹角与 b、 c夹角相等,则 a∥b。 A C D B1 A1 C1 D1 B (3)连结 A1C1,则 A1C1//AC. 则 ∠ C1A1B(或其补角 )即为异面 直线 A1B与 AC的所成的角 . 连结 BC1,在 Δ A1BC1中 , 有 A1B=BC1=C1A1. 故 ∠ C1A1B=60176。 . 即异面直线 A1B与
例 3:在边长为 a的正方形 ABCD中, AB、 BC边上各有一 个动点 Q、 R,且 |BQ|=|CR|,试求直线 AR与 DQ的 交点 P的轨迹方程. 解析建立直角坐标系后,注意到 |BQ|=|CR|,即 |AQ|=|BR|而 P为两直线 AR与 DQ的交点因而应引进参数,用参数法求其轨迹方程 例 3:在边长为 a的正方形 ABCD中, AB、 BC边上各有一 个动点 Q、 R,且
. 棱锥的性质 两个底面与平行于底面的截面是全等的多边形 复习棱柱性质: A B C D E H A’ B’ C’ E’ D’ H′ 截面 ∽ 底面 S 棱锥性质: 棱柱性质: 侧棱都相等,侧面是平行四边形 正 棱锥性质: 1.各侧棱相等,各侧面都是全等的等腰三角形. 正棱锥的性质 1.各侧棱相等,各侧面都是全等的等腰三角形.
1 1+ k1k2= 0 即 l1⊥ l2 k1k2=- 1. a bba 0ba 例 : 求证 : ,052:,0742: 21 yxlyxl.21 ll 变式( 1):求过点 A(2,1),且与直线 垂直的直线的方程 . 0102 yx变式( 2):已知直线 ax+(1a)y3=0与直线(a1)x+(2a+3)y2=0互相垂直,求 a的值。 练习: 如果直线
log )N Malog NalogNMalog Malog Nalogna Mlog n Malog )( Rn zxy32.zyx• P75求下列各式的值: • ( 1) log26- log23 (2) lg5+ lg2 (3)log53+ log5 ( 4) log35- log315 • 解 (1) log26- log23 = log2 = log22 =1 • (2)