高二数学向量在物理中的应用举例内容摘要:
问题; (2)模型的建立: 建立以向量为主体的数 学模型; 你能总结用向量解决物理问题的一 般步骤吗 ? 探究 2: (1)问题的转化: 把物理问题转化为数学 问题; (2)模型的建立: 建立以向量为主体的数 学模型; (3)参数的获得: 求出数学模型的有关解 ——理论参数值; 你能总结用向量解决物理问题的一 般步骤吗 ? 探究 2: (1)问题的转化: 把物理问题转化为数学 问题; (2)模型的建立: 建立以向量为主体的数 学模型; (3)参数的获得: 求出数学模型的有关解 ——理论参数值; (4)问题的答案: 回到问题的初始状态, 解决相关物理现象 . 例。高二数学向量在物理中的应用举例
相关推荐
log )N Malog NalogNMalog Malog Nalogna Mlog n Malog )( Rn zxy32.zyx• P75求下列各式的值: • ( 1) log26- log23 (2) lg5+ lg2 (3)log53+ log5 ( 4) log35- log315 • 解 (1) log26- log23 = log2 = log22 =1 • (2)
1 1+ k1k2= 0 即 l1⊥ l2 k1k2=- 1. a bba 0ba 例 : 求证 : ,052:,0742: 21 yxlyxl.21 ll 变式( 1):求过点 A(2,1),且与直线 垂直的直线的方程 . 0102 yx变式( 2):已知直线 ax+(1a)y3=0与直线(a1)x+(2a+3)y2=0互相垂直,求 a的值。 练习: 如果直线
32f ( x) 23 Rx 例题 已知函数 , ( 1)的条件下,函数 f(x)在 上递增,求 b的取值范围; )(b,小结:图像不动区间动,移动区间端点寻 求满足条件的极限位置。 问题二: f(x)在 R上递增,求 a的取值范围; 4xax21x32f ( x) 23 Rx 例题 已知函数 , 4axx(x)f 2 2 Rx 导函数 , f
|x1|1, |x2|1, x2x10, |x1x2|1, 即 1x1x21, ∴ x1x2+10. ∴ . 因此,当 a0时, f(x1)f(x2)0, 即 f(x1)f(x2),此时函数为减函数; 当 a0时, f(x1)f(x2)0, 即 f(x1)f(x2),此时函数为增函数. 22121 0 , 1 0 ,xx 21 2 1 1 22 2 2 21 2 1 211 1 1