高二数学利用导数求参数内容摘要:
32f ( x) 23 Rx 例题 已知函数 , ( 1)的条件下,函数 f(x)在 上递增,求 b的取值范围; )(b,小结:图像不动区间动,移动区间端点寻 求满足条件的极限位置。 问题二: f(x)在 R上递增,求 a的取值范围; 4xax21x32f ( x) 23 Rx 例题 已知函数 , 4axx(x)f 2 2 Rx 导函数 , f。高二数学利用导数求参数
相关推荐
问题; (2)模型的建立: 建立以向量为主体的数 学模型; 你能总结用向量解决物理问题的一 般步骤吗 ? 探究 2: (1)问题的转化: 把物理问题转化为数学 问题; (2)模型的建立: 建立以向量为主体的数 学模型; (3)参数的获得: 求出数学模型的有关解 ——理论参数值; 你能总结用向量解决物理问题的一 般步骤吗 ? 探究 2: (1)问题的转化: 把物理问题转化为数学 问题;
log )N Malog NalogNMalog Malog Nalogna Mlog n Malog )( Rn zxy32.zyx• P75求下列各式的值: • ( 1) log26- log23 (2) lg5+ lg2 (3)log53+ log5 ( 4) log35- log315 • 解 (1) log26- log23 = log2 = log22 =1 • (2)
|x1|1, |x2|1, x2x10, |x1x2|1, 即 1x1x21, ∴ x1x2+10. ∴ . 因此,当 a0时, f(x1)f(x2)0, 即 f(x1)f(x2),此时函数为减函数; 当 a0时, f(x1)f(x2)0, 即 f(x1)f(x2),此时函数为增函数. 22121 0 , 1 0 ,xx 21 2 1 1 22 2 2 21 2 1 211 1 1
222322 426 应用举例 不查表 ,求 cos105 176。 和 cos15 176。 的值 . 462 cos15 176。 = 462 答案: cos105176。 = 练习 23sin , ( , ) , c os ,3 2 43( , ) , c os ( ) , c os ( )2 例 2 、 已