高二数学抛物线的定义及标准方程内容摘要:
, x2=4y , x2=- 4y 41 已知抛物线的方程是 x2 +4y=0, 求它的焦点坐标和准线方程 . 解 : 把 抛物线的方程 x2 +4y=0化为标准方程, x2 =4y. 所以 p=2, 焦点坐标是 (0,1), 准线方程是 y = 1 求下列抛物线的焦点坐标和准线方程:。 20)1( 2 xy 。 21)2( 2 yx 。 052)3( 2 xy。高二数学抛物线的定义及标准方程
相关推荐
间 3个位置有 A33种。 由乘法共有 A22. A33=12(种 )排法。 优 先 法 二 .排列组合应用问题 解: ② 先从 b,c,d三个选其中两个 排在首末两位,有 A32种,然后把剩下的一个与 a,e 排在中间三个位置有 A33种,由乘法原理 : 共有 A32. A33=36种排列 . 间接法: A55 4A44+2A33(种)排法。 解:③ 捆绑法: a,e排在一起,可以将 a
17271 )711(4892 n答案: 4 4 4 4 4 ( 76) 的值为则312215 SSS )34()1(211713951 1 nS nn 已知 ___ 四 .错位相减法求和。 形式为: 的数列的求和,其中 为等差数列 na nb为等比数列 nnba解 : nS21
,求 A队最后所得总分的期望 . 五 .比赛得分问题 ,,的取值可为:解: 32102535353310 )(P525331525331525353321 )(P75285352323152525352322 )(P7585252323 )(P 2215E 六 .摸彩中奖问题 一个布袋内装有
个平面的位置关系有两种:相交或平行. 解: (1)平行或相交; (2)由两个平面平行的定义知,这两个平面平行; (3)平行; (4)平行或相交. 题型二 面面平行的判定 【 例 2】 如图,四边形 ABCD是平行四边形, PB⊥平面 ABCD, MA⊥ 平面 ABCD,求证:平面 AMD∥平面 BPC. 分析:根据面面平行的判定定理,在一个平面内确定两条相交直线与另一个平面平行即可. 证明:因为
212xxyykAB 则O x y A F B 2||pxAFA 焦半径|| AB焦点弦长pHH 2|| 21 通径对称轴的夹角)与为直线其中 ABp(s i n22时,当 90 pxy 22由t a n)2( pxy 0t a n4)2t a n(t a n 22222 pxppxy ,得:消4,t a n2 221221pxxppxx