高二数学向量的物理背景与概念内容摘要:
4. 有向线段: 讲授新课 具有方向的线段就叫做有向线段, 三个要素: 起点、方向、长度 . 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点 无关,只要大小和方向相同,这两个向 量就是相同的向量; (2)有向线段有起点、大小和方向三个素, 起点不同,尽管大小和方向相同,也是 不同的有向线段 . 4. 有向线段: 讲授新课 5. 零向量、单位向量概念: ② 长度为 1个单位长度的向量 , 叫 单位向量 . ① 长度为 0的向量叫零向量,记作 0. 0的方向是任意的 . 注意 0与 0的含义与书写区别 . 讲授新课 5. 零向量、单位向量概念: ② 长度为 1个单位长度的向量 , 叫 单位向量 . ① 长度为 0的向量叫零向量,记作 0. 0的方向是任意的 . 注意 0与 0的含义与书写区别 . 说明: 零向量、单位向量的定义都只是限制 了大小 . 讲授新课 a b c。高二数学向量的物理背景与概念
本资源仅提供20页预览,下载后可查看全文
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。
用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。
相关推荐
高二数学向量的正交分解与向量的直角坐标运算
, 你能得出 , , 的坐标吗。 1 1 a=(x ,y ) 2 2 b=(x ,y ) a+b a b λ a → → → → → → → 已知, a=(x1,y1),b=(x2,y2),则 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j 即 a+b=(x1+x2,y1+y2) 同理可得 ab=(x1x2,y1y2) 这就是说,两个向量和与差的坐标分别等
高二数学充分条件与必要条件
则说 p是 q的充分不必要条件 pq定义 :如果 p q, ,且 , 则说 p是 q的必要不充分条件 qp定义 :如果 p q, ,且 q p , 则说 p是 q的既不充分也不必要条件 > a = 0 ab=0。 要使结论 ab=0成立,只要有条件 a =0就足够了,“足够”就是“充分”的意思,因此称 a =0是ab=0的 充分条件。 另一方面如果 ab≠0,也不可能有 a =0
高二数学二元一次不等式
的交集,因而是各个不等式所表示的平面区域的公 共部分. 例 2 : 画出不等式组 x - y + 5 ≥ 0x + y ≥ 0x ≤ 3表示的平面区域. 解: 不等式 x- y+ 5≥0 表示直线 x- y+ 5= 0 上及其右下方 的点的集合, x+ y≥0 表示直线 x+ y= 0 上及其右上方的点的集 合, x≤3 表示直线 x= 3 上及其左方的点的集合.故不等式组表