高二数学函数单调性课件内容摘要:
f(x)在 区间 I上是 单调减函数 . 一般地 ,设函数 y= f(x)的定义域为 A, 区间 I A. 如果对于区间 I内的 任意两个值 ,时,都有当 212121 , xfxfxxxx 如果函数 y=f(x)在区间 I是单调增函数或单调减函数 ,那么就说函数 y=f(x)在区间 I上具有 单调性 . 单调增区间和单调减区间统称为 单调区间 . 单调性、单调区间 2 4 6 8 10 12 14 16 18 20 22 24 10 8 6 4 2 2 0 θ/186。 C t/h y= f(x), x∈ [0, 24] 例 根据图象说出函数的单调区间 [0, 4] [4, 14] [14, 24] 1( 2) ( 0)yxx2( 1 ) 2yx 例 画出下列函数图象,并 写出单调区间: 例 画出下列函数图象,并 写出单调区间: 2( 1 ) 2yx ,0单 调 增 区 间 为 0, 单 调 减 区 间 为y x O 2 1 2 1 1 2 1( 2) ( 0)yxx , 0 0 两 个 单 调 减 区 间 和 ,。高二数学函数单调性课件
相关推荐
的动圆圆心 S的轨迹。 ( 1)与两圆均外切 A B x y ( 2)与两圆均内切 A B x y ( 3)与圆 A内切、与圆 B外切 A B x y ( 4)与圆 A外切、与圆 B内切 A B x y 三、深入探索: 例 2:与 ⊙ A(x+5)2+y2=49, ⊙ B (x5
xMF = aacx , xaca , , ∴当 ax 时, aacxMF 1 , aacxMF 2, 有 aaacxaacxMFMF 221 ; 当 ax 时, aacxMF 1, aacxMF 2, 有 aaacxaacxMFMF 221 综上:焦点在 x 轴上双曲线的标准方程是 12222byax① , 其中
学们求下列函数的导数 : 22) ( ) ,3 ) ( ) ,14) ( ) ,y f x xy f x xy f xx39。 1y 2139。 yx39。 2yx表示 y=x图象上每一点处的切线斜率都为 1 这又说明什么 ? 公式 2: . )()( 1 Qnnxx nn 请注意公式中的条件是 ,但根据我们所掌握的知识 ,只能就 的情况加以证明
(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 已知 p: |x+1|> 2, q: x2< 5x- 6, 则非 p是非 q的( ) A A 巩固练习 设集合 M={x|x2},N={x|x3}, 那么” x∈ M或 x∈ N”是“ x∈ M∩N”的 ( ) B必要不充分条件 C充分不必要 D不充分不必要 B a∈ R,|a|3成立的一个必要不充分条件是
是 6的概率 .(4)点数之积是 6的概率 .(5)点数之和与点数之积相等的概率 .(6)点数之和能被 3整除的概率 . 例 5分钟有一辆公共汽车通过 ,乘客到达汽车站的任一时刻是等可能的 ,乘客等车不超过 3分钟的概率是 ( ) 例 ,在斜边 AB上取一点 M,求 AM长小于 AC长的概率 . ,更向减损术 ,秦九韶算法 ,进位制的互化 . 例 161与 253的最大公约数 .求 900与