高三数学汽车行驶的路程内容摘要:
2 , , )iinn n n ① ( 3 )求和 由 ①得, 21 1 11 1 1 2n n nnii i iiiS S v tn n n n =221 1 1 1 102nn n n n n = 222311 2 1 2nn = 31 2 1126n n nn =1 1 11 1 232 nn 从而得到 S 的近似值 1 1 11 1 232nSSnn ( 4 )取极限 当 n 趋向于无穷大时,即 t 趋向于 0 时,1 1 11 1 232nSnn 趋向于 S , 从而有111l i m l i mnnnniiS S vnn 1 1 1 5l i m 1 1 23 2 3nnn 思考: 结合求曲边梯形面积的过程,。高三数学汽车行驶的路程
相关推荐
k 如何看待这个值呢。 即在 H0成立的情况下 , K2的值大于 概率非常小 , 近似于。 而现在 K2的值 , 故它是小概率事件 ,所以 我们认为 H0 是不成立的 .虽然这种判断犯错 误的可能性存在 , 但 我们有 99%的把握认为 H0 是不成立的 !(即吸烟与患肺癌有关系 ) 2( 35 ) ( 2 )在 H0成立的情况下,统计学家研究出如下的 概率
B C •O A B C E D •O A B C E D F •P A B C D 相交弦定理 割线定理 切割线定理 切线长定理 PA•PB=PC•PD PA•PB=PC•PD PA178。 =PC•PD PA=PC 圆内的有关比例线段: 统一叙述为: 过一点 P( 无论点 P在圆内,还是在圆外)的两条直线,与圆相交或相切(把切点看成两个重合的“交点”)于点 A、 B、 C、 D
)2+ (y1- y2)2= 25② 联立 ①② 可得 x 1 - x 2 = 5y1 - y 2 = 0或 x 1 - x 2 = 0y1 - y 2 = 5. 由上可知,直线 l的倾斜角分别为 0176。 或 90176。 , 故所求的直线方程为 x= 3或 y= 1. 对称问题 求直线 l1: y= 2x+ 3关于直线 l: y= x+ 1对称的直线 l2的方程. 【
表示条件 p(M),列出方程 f(x,y)=0; --化方程 f(x,y)=0为最简形式; --证明以化简后的方程的解为坐标的点都是曲线上的点。 发散 2: △ ABC顶点 B、 C的坐标分别是( 0、 0)和( 0), BC边上的中线长为 3,求顶点 A的轨迹方程。 以这个方程的解为坐标的点是否都在曲线上。 x B C y A (x- 2)2+y2=9 (x≠5且 x ≠1)