高三数学函数解析式内容摘要:

已知函数 (a、 b为常数且 ab≠0), f(2)=1,且f(x)= x有唯一解,则函数 f(x) =。 xf ( x ) =a x + b函数 f(x)对一切实数 x、 y都有f(x+y)- f(y)= x (x+2y+1)成立,且 f(1)= 0. ⑴ 求 f(0)的值; ⑵当 f(x)+2loga x,x∈ (0,1/2)恒成立时, 求实数 a的取值范围。 直角梯形 ABCD中,AB//CD,∠ ABC=900,CD=2AB=2BC=4, P点从 B出发经 C点到 D点 ,设 P运动的路程为x,ΔABP的面积为 S,则函数 S=f(x)的表达式。 A P B C D 实际题重视定义域 三、抽象函数的解析式(验证法) 具有性质 f(xy)=f(x)+f(y)的函数是( ) x。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。