高一数学变量间的相互关系内容摘要:
函数关系是一种 因果关系 ,而相关关系不一定是因果关系 ,也可能是 伴随关系。 例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系,然而学会新词并不能使脚变大,而是涉及到第三个因素 —— 年龄,当儿童长大一些以后,他的阅读能力会提高,而且由于人长大脚也变大。 如何分析变量之间是否具有相关的关系 分析变量之间是否具有相关的关系,我们可以借助日常生活和工作 经验 对一些常规问题来进行 定性分析 ,如儿童的身高随着年龄的增长而增长,但它们之间又不存在一种确定的函数关系,因此它们之间是一种非确定性的随机关系,即相关关系。 但仅凭这种定性分析不够; 一来定性分析有时会给我们以 误导。 二来定性分析无法确定变量之间相互影响的 程度有多大。 因些,我们还需要进行 定量分析。 如何进行 定量分析 呢。 由于变量间的相关关系是一种随机关。高一数学变量间的相互关系
本资源仅提供20页预览,下载后可查看全文
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。
用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。
相关推荐
高一数学向量与实数相乘
的起点指向末尾向量的终点的向量; nnn AAAAAAAAAA 11433221 ( 2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 01433221 AAAAAAAA n平面向量 概念 加法 减法 数乘 运算 运 算 律 定义 表示法 相等向量 减法 :三角形法则 加法 :三角形法则或 平行四边形法则 空间向量 具有大小和方向的量 数乘 :ka
高一数学反函数的定义
__,x在 [1,+)上有 __________ 的值和它对应,故 x是 ____的函数。 [0, +)上 [1,+) [0,+) 唯一确定 y 原函数: 表达式: 定义域: 值域: [1,) [0,+) 新函数: [1,+) [0,+) 反函数 ,记为: 反函数的一般定义参见课本。 同样,在 (2)中,也把新函数 称为原函数 的 反函数 ,记为: 在 (1)中,我们称新函数