高一数学二面角的应用课件内容摘要:
OC⊥ AB交 PM于 C, 在 β内作 OD⊥ AB交 PN于 D, 连 CD,可得 ∠ COD是二面角 αABβ的平面角 设 PO = a , ∵ ∠ BPM =∠ BPN = 45186。 ∴ CO=a, DO= a , PC a , PD a 又 ∵∠ MPN=60186。 ∴ CD=PC a ∴∠ COD=90186。 因此,二面角的度数为 90186。 a O P C 二面角 08:29 例 2. 如图 P为二面角 α–ι–β内一点 , PA⊥ α,PB⊥ β,且PA=5, PB=8, AB=7, 求这二面角的度数。 过 PA、 PB的平面 PAB与 棱 ι 交于 O点 ∵ PA⊥ α ∴ PA⊥ ι ∵ PB⊥ β ∴ PB⊥ ι ∴ ι⊥ 平面 PAB ∴ ∠ AOB为二面角 α–ι–β的平面角 又 ∵ PA=5, PB=8, AB=7 由余弦定理得 ∴ ∠ P= 60186。 ∴∠ AOB=120186。 ∴ 这二面角的度数为 120186。 解: β α A B P ι O 二面角。高一数学二面角的应用课件
相关推荐
, 换元适当,事半功倍。 21解 : ( 1) 令 t = 3 x 1 0 , 有 x = ( t + 1 ) , 3m in3 6 5 6 5, y , .2 1 2 1 2ty , 故221 1 3 6 5于 是 y = 5 ( t + 1 ) + t = ( t ) + ,3 3 2 1 2 ( 2 ) , 0 , , 2 2 4 4 c o sy
y 轴对称 关于直线 x=一对称 反 馈 作函数 y = 的图象 . 略: o x y y= o x y y= 图象如右图 . 已知函数 f(x)= 的图象为 C. (1)把 C关于 y 轴对称得到 C1,则 C1解析 式为 ; (2)把 C1右移 2个单位得到 C2,则 C2解析 式为 ; (3)把 C2关于 y=x对称得到 C3,则 C3解析 式为 ; (4)把 C3关于 x 轴对称得到
垂线 AC、 BD, C、 D分别是垂足,求二面角 C- AB- D的余弦值。 例 2:在所给的空间图形中,四边形 ABCD是 正方形, PD
的交点个数: x y 0 •(x,0) a0 a0 c0 c=0 c0 ab0 ab=0 ab0 Δ0 Δ=0 Δ0 x= b 2a (1)a确定抛物线的开口方向: (2)c确定抛物线与 y轴的交点位置 : (3)a、 b确定对称轴 的位置 : (4)Δ确定抛物线与 x轴的交点个数: x y 0 • a0 a0 c0 c=0 c0 ab0 ab=0 ab0 Δ0 Δ=0 Δ0 x= b 2a 例
22 )s i n (1)c o s (2)c o s ( 2222s i ns i n)s i n(2)s i n(c osc os)c os (2)c os (即: 展开,得 1)c o s (21 c o s)c o s (2s i n)s