高二数学复数与几何内容摘要:
, (如图)求 C点的轨迹方程。 解 : 设 C(x ,y),B(x’,y’) 因为 zB–zA =(zC –zA)i 所以 x’ + y’ i – 2 = ( x – 2+ y i ) i ( x’ – 2 )+ i y ’ = – y + ( x + 2 ) i x’ – 2 = – y y’=x+2 又( x’) 2+( y’)。高二数学复数与几何
相关推荐
x sin x - 2c os x′ =( x sin x - 2 ) ′ c os x + ( x sin x - 2 ) sinxc os2x =( sin x + x c os x ) c os x + x sin2x - 2sin xc os2x =sin x c os x + x - 2sin xc os2x= tan x +xc os2x-2ta n xc os x.
的商 仍然是一个复数,其运算的结果就是 分母实数化的结果,请同学们类比实 数集中分数分母有理化的方法,给出 两复数的商的另外一种计算方法 . dicbia同学们讨论,得出如下算法 : idcadbcdcbdac2222 22)()(dciadbcbdac))(())((dicdicdicbia例 1:计算:
上; 如果 y2的系数为正,则焦点在 y轴上 注 3:焦半径公式 注 4:弦中点问题: “点差法”、“韦达定理” 知识指要 实例 双曲线 直线与双曲线的位置关系 知识指要 双曲线 交点 直线与双曲线没有交点: 直线与双曲线有一个交点: 直线与双曲线有两个交点: 等轴双曲线 双曲线的渐近线 知识指要 双曲线 知识指要 抛物线 P的几何意义 :焦点到准线的距离 焦点在 x 轴上的抛物线标准方程可设为
A∩B=φ,则 A∪ B=A。 否命题:若 A∪ B≠A,则 A∩B≠φ。 逆否命题:若 A∩B≠φ,则 A∪ B≠A。 (假) (假) (假) (假) 3)一个命题的原命题为假,它的逆命题一定为假。 (错) 4)一个命题的逆否命题为假,它的否命题为假。 (错) 练一练 郑平正制作 2020/12/19 练习:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。 ( 1)若 q1
A P Q 变 题 O F y x 利用圆锥曲线的定义将 折线段和 的问题 化归 为平面上 直线段最短 来解决 . B P Q O F y x B P F1 P1 P2 例 3备 O x y E A B D