高三数学多面体与正多面体内容摘要:
1C1D1中, M、 N分别是 A1BBB1的中点,则直线 AM与 CN所成的角的余弦值是_____________. 25【典例剖析 】 【 例 1】 已知甲烷 CH4的分子结构是中心一个碳原子,外围有 4个氢原子(这 4个氢原子构成一个正四面体的四个顶点) .设中心碳原子到外围 4个氢原子连成的四条线段。高三数学多面体与正多面体
本资源仅提供20页预览,下载后可查看全文
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。
用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。
相关推荐
高三数学平面向量向量及向量的基本运算
, 方向是任意的。 ②数乘向量满足交换律、结合律与分配律。 aaaa 0a0a a0 0 aa5)两个向量共线定理 向量 与非零向量 共线 有且只有一个实数 , 使得 =。 ba ba6)平面向量的基本定理 如果 是一个平面内的两个不共线向量,那么对这一平面内的任一向量 ,有且只有一对实数 使: 其中不共线的向量
高三数学圆锥曲线课件
2 | 2a |F1F2 | 双曲线 两条射线 无轨迹 求轨迹方程的一般步骤 : 方程的推导 建系 设点 列式 化简 F2 F1 M y o x 解 : 以 F1,F2所在的直线为 X轴,线段 F1F2的中点为原点建立直角坐标系。 设 M( x , y), F1(c,0),F2(c,0) | |MF1| |MF2| | = 2a 化简得 F1 y x o F2 思考 : 焦点在
高三数学圆锥曲线的综合问题
知圆 k过定点 A(a,0)(a> 0),圆心 k在抛物线 C:y 2 =2ax上运动, MN为圆 k在 y轴上截得的弦 . (1)试问 MN的长是否随圆心 k的运动而变化。 (2)当 |OA|是 |OM|与 |ON|的等差中项时,抛物线 C的准线与圆 k有怎样的位置关系。 本题考查圆锥曲线科内综合的知识及考生 综合、灵活处理问题的能力。 知识依托于弦长公式,韦达定理,等差中项,绝对值不等式