高三数学圆与圆的位置关系内容摘要:
O A B P 解 : (1)设 ⊙ O与 ⊙ P外切于点 A, 则 PA=OPOA PA=3cm. (2)设 ⊙ O 与 ⊙ P内切于点 B, 则 PB=OP+OB PB=13cm. 练习 举出一些能表示两个圆不同位置关系的实例。 ⊙ O1和 ⊙ O2的半径分别为 3厘米和 4厘米,设 ( 1) O1O2=8厘米 ; ( 2) O1O2=7厘米; ( 3) O1O2=5厘米; ( 4) O1O2=1厘米; ( 5) O1O2=; ( 6) O1和 O2重合。 ⊙ O1和 ⊙ O2的位置关系怎样。 定圆 O的半径是 4厘米,动圆 P的半径是 1厘米。 ( 1)设 ⊙ P和 ⊙ O相外切,那么点 P与点 O的距离 是多少。 点 P可以在什么样的线上移动。 ( 2)设 ⊙ P和 ⊙ O相内切,情况怎样。 如图,。高三数学圆与圆的位置关系
相关推荐
且BLBC= l ,CMCA= m ,ANAB= n , 若 AL→ + BM→ + CN→ = 0. 求证 : l = m = n. 【 证明 】 设 BC→= a , CA→= b 为基底,由已知得 BL = l a , CM→= m b . ∵ AB→= AC→+ CB→=- a - b , ∴ AN→= n AB→=- n a - n b AL→= AB→+ BL→= (l - 1) a
=| x | 与 y = s in x 的图象: 根据图象可得不等式的解集为: 2π2ππ),( π)π,()ππ,( 2202 π),( π)π,()ππ,( 2202 题型四 等价转化法 将所给的命题进行等价转化,使之成为一种容易理解的语 言或容易求解的模式.通过转化,使问题化繁为简、化陌 生为熟悉,将问题等价转化成便于解决的问题,从而得出 正确的结果. 例 6 设函数 f (
: b1= , bn+ 1= + bnbnbn- 1…b10, 所以 {bn}是单调递增数列 , 故要证 : bn1(n≤k)只需证 bk1 若 k=1, 则 b1= 1显然成立 若 k≥2, 则 bn+ 1= 所以 因此: 2121 nbk21nnnnn bbbkbbk 12 11kbb nn111111211)11()11(1bbbbbb kkk
≤a< 1 161y=x2+2 2 2 3 3 2 11 y=kx y=2 x 2y= 2 x 2② 解:原不等式可化为: x2+2kx 例 ①若不等式 x2 logax对 x ( 0, ) 恒成立,则实数 a的取 值范围 是 ————————————。 ②若不等式 x2kx+20,对 x [3,3]恒成立,则实数 k的 取值范围是 ——————————。 21设 y1= x2+2 (x
φ 值时,往往以寻找“五点法”中的第一零点 作为突破口.具体如下: “第一点” (即图象上升时与 x轴的交点 )为 ωx+φ =0;“第二点” (即图象的“峰点” )为 ωx+φ = “ 第三点” (即图象下降时与 x轴的交点 )为 ωx+φ =π ;“第四点” (即图象的“谷点” )为 ωx+φ = ;“第五点”为 ωx+φ =2π . 2 . 已知 f ( x) = A sin ( ω x