高三数学含参不等式恒成立内容摘要:
≤a< 1 161y=x2+2 2 2 3 3 2 11 y=kx y=2 x 2y= 2 x 2② 解:原不等式可化为: x2+2kx 例 ①若不等式 x2 logax对 x ( 0, ) 恒成立,则实数 a的取 值范围 是 ————————————。 ②若不等式 x2kx+20,对 x [3,3]恒成立,则实数 k的 取值范围是 ——————————。 21设 y1= x2+2 (x [3,3]) y2= kx 在同一坐标系下作它们的图 象如右图 : 由图易得 : 2 k2 2 2 2 k2 2 2x y 0 小结 : 对于 f(x)≥g(x)型问题,利用数形结合思想转化为函数 图象的关系再处理。 练习 若 ≤ kx1 对 x [1,+ ) 恒成立,则实数 k的取值范 围是: _____________。 x k≥ 2 例 若不等式 x +2 ≤a(x+y)对一切正数 x、 y恒成 立, 则实数 a的取值范围 是 —————————。 xy令 ( t 0) txy 解 : 分离参数得 : a ≥ yx xy2x 又 令 1+2t=m( m 1) ,则 f(m)= 2)21m(1m 2)m5m(4 ∴ a ≥ [f (x)] max= 即 a ≥ 215 215 (当且仅当 m= 时等号成立 ) 52152524 5m22mm4xy1。高三数学含参不等式恒成立
相关推荐
O A B P 解 : (1)设 ⊙ O与 ⊙ P外切于点 A, 则 PA=OPOA PA=3cm. (2)设 ⊙ O 与 ⊙ P内切于点 B, 则 PB=OP+OB PB=13cm. 练习 举出一些能表示两个圆不同位置关系的实例。 ⊙ O1和 ⊙ O2的半径分别为 3厘米和 4厘米,设 ( 1) O1O2=8厘米 ; ( 2) O1O2=7厘米; ( 3) O1O2=5厘米; ( 4)
且BLBC= l ,CMCA= m ,ANAB= n , 若 AL→ + BM→ + CN→ = 0. 求证 : l = m = n. 【 证明 】 设 BC→= a , CA→= b 为基底,由已知得 BL = l a , CM→= m b . ∵ AB→= AC→+ CB→=- a - b , ∴ AN→= n AB→=- n a - n b AL→= AB→+ BL→= (l - 1) a
=| x | 与 y = s in x 的图象: 根据图象可得不等式的解集为: 2π2ππ),( π)π,()ππ,( 2202 π),( π)π,()ππ,( 2202 题型四 等价转化法 将所给的命题进行等价转化,使之成为一种容易理解的语 言或容易求解的模式.通过转化,使问题化繁为简、化陌 生为熟悉,将问题等价转化成便于解决的问题,从而得出 正确的结果. 例 6 设函数 f (
φ 值时,往往以寻找“五点法”中的第一零点 作为突破口.具体如下: “第一点” (即图象上升时与 x轴的交点 )为 ωx+φ =0;“第二点” (即图象的“峰点” )为 ωx+φ = “ 第三点” (即图象下降时与 x轴的交点 )为 ωx+φ =π ;“第四点” (即图象的“谷点” )为 ωx+φ = ;“第五点”为 ωx+φ =2π . 2 . 已知 f ( x) = A sin ( ω x
合律与分配律。 aaaa 0a0a a0 0 aa5)两个向量共线定理 向量 与非零向量 共线 有且只有一个实数 , 使得 =。 ba ba6)平面向量的基本定理 如果 是一个平面内的两个不共线向量,那么对这一平面内的任一向量 ,有且只有一对实数 使: 其中不共线的向量 叫做表示这一平面内所有向量的一组基底。 21 ,eea21