高三数学函数性质及应用内容摘要:
22 bxxB A BBA AxxBA |{ }Bxa b x Ax )(EP x BA)(FP x BA a b32)( EP 31)( FPa bna nb备选题: 已知函数。 ( I) 证明函数 的图象关于点 成中心对称图形; ( II) 当 x∈[a+ 1, a+2]时 , 求证: f (x)∈[― 2, ―] ; ( III) 利用函数 构造一个数列 {xn}, 方法如下:对于给定的定义域中的 x1, 令 , … 在上述构造数列的过程中 , 如果在定义域中 , 构造数列的过程将继续下去;如果 xi不在定义域中 , 则构造数列的过程停止。 如果取定义域中任一值作为 x1, 都可以用上述方法构造出一个无穷数列{xn}, 求实数 a的值。 Raxa axxf ,1)()( xfy )( xfy )1,( a),(),( 2312 xfxxfx )(, 1 nn xfx课 前 热 身 2500m2 C , 101010 200m的围墙 , 如果用此材料在一边靠墙的地方围成一块矩形场地 , 中间用同样的材料隔成三个面积相等的矩形 (如图所示 ), 则围成的 矩形最大面积为 _______ (围墙厚度不计 ). f(x)在 (∞,0)内是减函数 , 若 f(1)< f(lgx), 则实数 x 的取值范围是 _________________________. 上函数 f(x)= x2+px+q与 g(x)= x22x在同一 点取得最小值 , f(x)min= 3, 那么 f(x)在区间 上最大 值是 ( ) (A)54 (B)134 (C)4 (D)8 221, 2。高三数学函数性质及应用
相关推荐
标为 ( a , b ) , 因为圆 O 与圆 Q 相外切于 P , 所以 O 、 P 、 Q 共线,且 λ =OP=-64=-32. 由定比分点公式求得 a =- 3 , b = 3 3 . 所以所求圆的方程为 ( x + 3)2+ ( y - 3 3 )2= 1 6 . (2 ) 如图,因为圆周被直线 3 x + 4 y + 15 = 0 分成 1 ∶ 2 两部分, 所以 ∠ AO B =
的前 n项之和 为 Sn, 则 Sn的值得等于 ( ) (A) (B) (C) (D) ,,, nn 2 1121617815413211 12211nn nn 2112 nnn 2112 2 nnn 2112 , 二进制即 “ 逢 2进 1”, 如 (1101)2表示二进制数 , 将它转换成十进制形式是 1 23+1 22+0 21+1 20=13,
突破难点 揭示向量坐标表示的实质: 相等的向量其坐标相同,坐标相同的向量是相等的向量 OA 一一对应向量 (x , y) 向量 点 (x , y) 一一对应本节的难点是对向量与实数对之间的一一对应关系的理解。 通过动画 , 结合向量相等的概念 , 指出任一向量总可以通过平移 , 使起点与原点重合。 由此 , 向量与实数对之间的一一对应关系就不难理解了。 x y 0
已 知 是 第 四 象 限 的 角 , 求的 值。 , 3解 : 由 s i n = 是 第 四 象 限 的 角 , 得522 354c o s 1 s in 1 ( ) ,5 s in 3ta nc o s 4 所 以) si n c os c os si n4 4 4 于 是 有sin(2 4 2 3 7 2( )。 2
值,在△ BCD中,由余弦定理可求出 BD,进而解△ ABD,求出 AB来. • 解析: 设四个角 A、 ∠ ABC、 C、 ∠ ADC的度数分别为 3x、 7x、 4x、 10x(x0),则 3x+7x+ 4x+ 10x= 360176。 ,解得 x= 15176。 . • ∴ A= 45176。 , ∠ ABC= 105176。 , C= 60176。 ,∠ ADC= 150176。 . •