高一数学函数模型应用实例内容摘要:
增长提供依据。 早在 1798年,英国经济学家马尔萨( ,17661834)就提出了自然状态下的人口增长模型: 0ny y e0y 年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 人数/万人 55196 56300 57482 58796 60266 61456 62828 64563 65994 67207 其中 t表示经过的时间, 表示 t= 0时的人口数, r表示人口的年平均增长率。 表 3是 1950~ 1959年我国的人口数据资料: 0y(1)如果以各年人口增长谐振平均值作为我国这一时期的人口增长率(精确到 ),用马尔萨斯人口增长模型建立。高一数学函数模型应用实例
相关推荐
令 x = y = 0 ,则 f ( 0 ) + f ( 0 ) = 2 f ( 0 )f ( 0 ) 2 f ( 0 ) = 2 f 2 ( 0 ) ∵ f ( 0 ) ≠ 0 ∴ f ( 0 ) = 1 令 x = 0 , y = x,则 f ( x ) + f (- x ) = 2 f ( 0 )f ( x ) f ( x ) + f (- x )= 2 f ( x ) f (- x
定义,怎样定义函数 的最小值。 ()fx()y f x0()f x m()f x m一般地,设函数 的定义域为 I,如果存在实数 m满足: ( 1)对于任意的 , 都有。 ( 2)存在 ,使得 . 那么称 m是函数 的最小值,记作 0xIxI()y f xm() inf x m函数最小值的几何意义:函数图象最低点的纵坐标。 讨论函数的最小值,要坚持定义域优先的原则
y≥a或 y≤a 对称性: 关于 x轴, y轴,原点对称 顶点 : B1( 0, a), B2( 0, a) 轴: 实轴 B1B2。 虚轴 A1A2 A1 A2 B1 B2 渐近线方程: 离心率: e=c/a F2 F2 o 例题 1:求双曲线 的实半轴长 ,虚半轴长 , 焦点坐标 ,离心率,渐近线方程。 解:把方程化为标准方程 可得 :实半轴长 a=4 虚半轴长 b=3 半焦距 c=
.B不一定是函数的值域 , ⑵ 两个函数相同必须是它们的定 义域和对应关系分别完全相同 . 值域由 定义域 和 对应关系 f 确定 . ⑶ 有时给出的函数没有明确说 ⑷ 常用 f(a)表示函数 y=f(x)当 x=a 明定义域 ,这时它的定义域就是自 变量的允许取值范围 . 时的函数 值 . 集合表示 区间表示 数轴表示 {x a< x< b} (a , b)。 {x a≤x≤b} [a ,