直线与平面垂直的性质(苏教版)内容摘要:
义 : 从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. 例 已知:一条直线 l和一个平面 α 平行. 求证:直线 l上各点到平面 α 的距离相等. 分析:首先,我们应该明确,点到平面的距离定义, 在直线 l上任意取两点 A、 B,并过这两点作平面 α的 垂线段,现在只要证明这两条垂线段长相等即可. 证明: 过直线 l上任意两点 A、 B分别引平面 α 的垂线 AABB1,垂足分别为 A B1 ∵ AA 1⊥ α , BB1⊥ α , ∴ AA1∥BB 1(直线与平面垂直的性质定理). 设经过直线 AA1和 BB1的平面为 β , β ∩ α = A1B1. ∵ l∥ α , ∴ l∥A 1B1. ∴ AA1=BB1(直线与平面平行的性质定理)即直线上各点到平面的距离相等. 直线和平面的距离的定义: 一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离. 本例题的证明,实际上是把立体几何中直线上的 点到平面的距离问题转化成平面几何中两条平行 直线的距离问题.这种把立体几何的问题转化成 平面几何的问题的方。直线与平面垂直的性质(苏教版)
本资源仅提供20页预览,下载后可查看全文
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。
用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。
相关推荐
直线和平面平行与平面和平面平行(苏教版)
D. 上述情况都有可能 . 2. 如图 , 正方体 AC1 中 ,点 N在 BD上 ,点 M在 B1 C上 且 CM = DN, 求证 : MN // 平面 AA1B1B . D1 A1 B D C B1 C1 A N M F E 3. 空间四边形 ABCD被一平面所截, E、 F、 G、 H分别 在 AC、 CB、 BD、 DA上,截面 EFGH是矩形 . (1) 求证 : CD // 平面
直线与圆的位置关系[上学期]华师大版
称 图 形 圆心到直线距离d与半径 r的关系 dr 归纳 与 小结 d=r dr 2 交点 割线 1 切点 切线 0 总结: 判定直线 与圆的位置关系的方法有 ____种: ( 1)根据定义,由 ________________ 的个数来判断; ( 2)根据性质,由 _________________ ______________的关系来判断。 在实际应用中,常采用第二种方法判定。 两 直线
直线与圆的位置关系浙教版
76。 ( 60176。 +30176。 ) =90176。 ∴ AB⊥ OB ∴ AB为 ⊙ O的切线 做一做: 如图AB是 ⊙ O的直径,请分别过A,B作 ⊙ O的切线. A O B 例 ,台风 P(100,200)沿北偏东 30176。 方向移动 ,受台风影响区域的半径为 200km,那么下列城市A(200,380),B(600,480),C(550,300),D(370,540)中