九年级数学相似形内容摘要:

AC 证明:∴ △ ABC∽ △ CBD. .BDBCBCAB .2 ABBDBC ).9(6 2  xx.03692  xx.0)3)(12(  xx.3),(12 21  xx 舍,3 BD.12ABA B C D x 6 x+9 , ABCDBCAC 证明:∴ △ ABC∽ △ CBD. .BDBCBCAB .2 ABBDBC ).9(6 2  xx.03692  xx.0)3)(12(  xx.3),(12 21  xx 舍,3 BD.33CD.12AB在△ CBD中, 用勾股定理可得 A B C D x 6 x+9 , ABCDBCAC 证明:∴ △ ABC∽ △ CBD. .BDBCBCAB .2 ABBDBC ).9(6 2  xx.03692  xx.0)3)(12(  xx.3),(12 21  xx 舍,3 BD.33CD.12AB.36AC在△ CBD中, 用勾股定理可得 在△ ABC中,用勾股定理可得 A B C D ∠ A=∠ 1, ∠ B=∠ 2. 1 2 G A B C D E 已知 : 在 Rt△ ABC中 , AB=AC, ∠ BAC=90186。 , D是 AC的中点 , AG⊥ BD交 BC于 E, 求证 : BE=2EC.。 G A B C D E。 F G A B C D E。 F 需证 AC : BF=1 : 2, 即证 AB : BF=1 : 2. G A B C D E。 F AD : AB=1 : 2 , 需证 AC : BF=1 : 2, 即证 AB : BF=1 : 2. G A B C。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。