高一数学函数建构和函数模型内容摘要:
tt 思考 4:你能画出这个函数的图象吗。 t y o 1 2 3 4 5 知识探究(一):函数模型问题 问题: 人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据 .早在 1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型: ,其中 t表示经过的时间, y0表示 t=0时的人口数, r表示人口的年平均增长率 .下表是我国 1950~ 1959年的人口数据资料: 0 rty y e67207 65994。高一数学函数建构和函数模型
相关推荐
1, ∴ f(x)=(x)+2=x+2=f(x). 当 x1时, f(x)=x+2, x1, ∴ f(x)=x+2=f(x). 当 1≤x≤1时, f(x)=0, 又 1≤x≤1, ∴ f(x)=f(x)=0. ∴ 对定义域内的每个 x都有 f(x)=f(x), ∴ f(x)是偶函数. 判断下列函数的奇偶性. 变式 11 22,0(1 ) ( ),0x x xfxx x x
s in α - c o s α )2= 1 - 2 s i n α c o s α = 1 - ( -79) =169, ∴ s in α - c o s α =43. ( 2 ) s in3(π2- α ) + c o s3(π2+ α ) = c o s3α - s i n3α = ( c o s α - s i n α )( c o s2α + c o s α s in α + s
),4000(,2020200021)400(,100600002)(xxxxxxf ;最大值为时,所以当,的对称轴为函数此时,时,当25000)(300400,03002020200021)(,2020200021)(400022xfxxxxxfxxxfx元。 获得的最大利润为,获得的利润最大,此时个产品时,该科技公司答:当每月生产250003002 5 0 0
值 解 :∵f(x)=x 2+2x+a的对称轴为 x=- 1, ∴f(x) 在 [0, 2]上单调递增, ∴f(x) 的最小值为f(0)=a,即 a=4 2 变 2:已知函数 f(x)=x2+2x+a(0≤x≤2 )的最小值是 4,求 a的值。 1 O x y 解 :∵f(x)=x 2+2x+a的对称轴为 x=- 1, ∴f(x) 在 [0, 2]上单调递增, ∴f(x) 的最小值为f(0)=a
y=x2 顶点坐标 对称轴 位置 开口方向 增减性 极值 ( 0, 0) ( 0, 0) y轴 y轴 在 x轴的上方(除顶点外) 在 x轴的下方(除顶点外) 向上 向下 当 x=0时,最小值为 0。 当 x=0时,最大值为 0。 二次函数 y=ax2的性质 1、顶点坐标与对称轴 2、位置与开口方向 3、增减性与极值 练习 2 想一想 在同一坐标系内,抛物线 y=x2与抛物线 y=