高一数学二次函数的性质和图像内容摘要:

y=x2 顶点坐标 对称轴 位置 开口方向 增减性 极值 ( 0, 0) ( 0, 0) y轴 y轴 在 x轴的上方(除顶点外) 在 x轴的下方(除顶点外) 向上 向下 当 x=0时,最小值为 0。 当 x=0时,最大值为 0。 二次函数 y=ax2的性质 1、顶点坐标与对称轴 2、位置与开口方向 3、增减性与极值 练习 2 想一想 在同一坐标系内,抛物线 y=x2与抛物线 y= x2的位置有什么关系。 如果在同一坐标系内 画函数 y=ax2与 y= ax2的图象,怎样画才简便。 练习 4 动画演示 在同一坐标系内,抛物线 y=x2与抛物线 y= x2的位置有什么关系。 如果在同一坐标系内 画函数 y=ax2与 y= ax2的图象,怎样画才简便。 答:抛物线抛物线 y=x2与抛物线 y= x2 既关于 x轴对称,又关于原点对称。 只要画出 y=ax2与 y= ax2中的一条抛物线,另一条可利用关于 x轴对称或关于原点 对称来画。 2xy 2xy 当 a0时,在对称轴的 左侧, y随着 x的增大而 减小。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。