高一数学幂函数和幂函数性质内容摘要:
, 1 )(1 , 1 )x 3 2 1 1 2 3 1/3 1/2 1 1 1/2 1/3 432112346 4 2 2 4 6y= x1y= x12y= x3y= x2y= x(4 , 2 )(2 , 4 ) (2 , 4 )(1 , 1 )(1 , 1 )(1 , 1 )432112346 4 2 2 4 6y= x1y= x12y= x3y= x2y= x(4 , 2 )(2 , 4 ) (2 , 4 )(1 , 1 )(1 , 1 )(1 , 1 )y=x0432112346 4 2 2 4 6y= x1y= x12y= x3y= x2y= x(4 , 2 )(2 , 4 ) (2 , 4 )(1 , 1 )(1 , 1 )(1 , 1 )y=x0在第一象限内 ,函数图象的变化趋势与指数有什么关系 ? 在第一象限内, 当 k0时,图象随 x增大而上升。 当 k0时,图象随 x增大而下降 不管指数是多少,图象都经过哪个定点 ? 432112346 4 2 2 4 6y= x1y= x12y= x3y= x2y= x(4 , 2 )(2 , 4 ) (2 , 4 )(1 , 1 )(1 , 1 )(1 , 1 )在第一象限内, 当 k0时,图象随 x增大而上升。 当 k0时,图象随 x增大而下降。 图象都经过点( 1, 1) y=x0K0时 ,图象还都过点 (0,0)点。高一数学幂函数和幂函数性质
相关推荐
― → = ( 1 - x , 4 - y ) , ∵ AC ― → = 2 CB ― → , ∴ x - 7 = 2 1 - x y - 1 = 2 4 - y ,解得 x = 3y = 3. ∴ C ( 3 , 3 ) . 又 ∵ C 在直线 y =12ax 上, ∴ 3 =12a 3 , ∴ a = 2 ,故选 A. 共线向量的坐标运算 【 例 3】
思考 5:根据图象,不等式 log2x2xx2和 log2xx22x成立的 x的取值范围分别如何。 思考 6:上述不等式表明,这三个函数模型增长的快慢情况如何。 x y o 1 1 2 4 y=2x y=x2 y=log2x 探究(二):一般幂、指、对函数模型的差异 思考 1:对任意给定的 a1和 n0,在区间 (0,+∞)上 ax是否恒大于 xn? ax是否恒小于 xn? 思考 2:当 a1,
平行 面面平行 即: a b b// β a// β a∩ b=A 线不在多,重在相交 //β α β a b A 练习: 1 判断下列命题的真假。 (1) mㄈ α,nㄈ α,m∥ β,n ∥ β=> α ∥ β (2) α内有无数条直线平行于 β=> α ∥ β (3) α内任意一条直线平行于 β=> α ∥ β (4) 平行于同一直线的两平面平行; (5)过已知平面外一点
数的图像) 对 数 函 数 的 性 质 及 应 用 画出下列函数的图像。 y = l g x y = log 2 x y = log x 描点法画对数函数图像. g s p对 数 函 数 的 性 质 及 应 用 y = l g x y = 10 x xy=2 y = log 2 x (0,1) (1,0) o y x y=x xy )( 21xy21logx y 1 o 对 数 函 数 的
⑴ log 67 , log 7 6。 ⑵ log 3π , log 2 . 解 : ⑴ ∵ log67> log66= 1 log< log21= 0 说明 :利用对数函数的增减性比较两个对数的大小 . 当不能直接进行比较时 ,可在两个对数中间插入 一 个已知数 (如 1或 0等 ),间接比较上述两个对数的大小 提示 : log aa= 1 提示 : log a1= 0 log76<