基于proteus的单片机虚拟实验系统的设计内容摘要:
P2.0P2.1P2.2P2.3D7D6D5D4D3D2D1D0P 3 . 4P 3 . 5P 3 . 6P 3 . 2P 3 . 2P 3 . 1P 3 . 0 图 32 AT89C52 芯片 1) AT89C52 介绍 AT89C52 是一个低电压,高性能 CMOS 8 位单片机,片内含 8k bytes 的可反复擦写的 Flash 只读程序存储器和 256 bytes 的随机存取数据存储器( RAM),器件采用 ATMEL 公司的高密度、非易失性存储技术生产,兼容标准 MCS51 指令系统,片内置通用 8 位中央处理器和 Flash 存储单元,功能强大的 AT89C52 单片机可为您提供许 多较复杂系统控制应用场合。 AT89C52 有 40 个引脚, 32 个外部双向输入 /输出( I/O)端口,同时内含 2 个外中断口, 3 个 16 位可编程定时计数器 ,2 个全双工串行通信口, 2 个读写口线,AT89C52 可以按照常规方法进行编程 ,但不可以在线编程 (S 系列的才支持在线编程 )。 其将通用的微处理器和 Flash 存储器结合在一起,特别是可反复擦写的 Flash存储器可有效地降低开发成本。 AT89C52 有 PDIP、 PQFP/TQFP 及 PLCC 等三种封装形式,以适应不同产品的需求。 2) AT89C52 管脚说明: AT89C52 为 40 脚双列直插封装的 8 位通用微处理器,采用工业标准的 C51 内核,在内部功能及管脚排布上与通用的 8xc52 相同,其主要用于会聚调整时的功能控制。 功能包括对会聚主 IC 内部寄存器、数据 RAM 及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号 IR 的接收解码及与主板 CPU通信等。 主要管脚有: XTAL1( 19 脚)和 XTAL2( 18 脚)为振荡器输入输出端口,外接 12MHz 晶振。 RST/Vpd( 9 脚)为复位输入端口,外接电阻电容组成的复位电路。 VCC( 40 脚)和 VSS( 20 脚 )为供电端口,分别接 +5V 电源的正负端。 P0~P3 为可编程通用 I/O 脚,其功能用途由软件定义,在本设计中, P0 端口( 32~39 脚)被定义为 N1 功能控制端口,分别与 N1 的相应功能管脚相连接, 13 脚定义为 IR 输入端, 10 脚和11 脚定义为 I2C 总线控制端口,分别连接 N1 的 SDAS( 18 脚)和 SCLS( 19 脚)端口, 12 脚、 27 脚及 28 脚定义为握手信号功能端口,连接主板 CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。 VCC:供电电压。 GND:接地。 P0 口 : P0 口是 一组 8 位漏极开路型双向 I/O 口, 也即地址 /数据总线复用口。 作为输出口用时,每位能吸收电流的方式驱动 8 个 TTL 逻辑门电路,对端口 P0 写 “1”时,可作为高阻抗输入端用。 在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。 在 Flash 编程时, P0 口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。 P1 口 : P1 是一个带内部上拉电阻的 8 位双向 I/O 口, P1 的输出缓冲级可驱动(吸收或输出电流) 4 个 TTL 逻辑 门电路。 对端口写 “1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。 作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流 (IIL)。 与 AT89C52 不同之处是, 和 还可分别作为定时 /计数器 2 的外部计数输入( )和输入( ),参见表 1。 Flash 编程和程序校验期间, P1 接收低 8 位地址。 表 一 : 引脚号 功能特性 T2,时钟输出 T2EX(定时 /计数器 2) P2 口 : P2 是一个带有内部上拉电阻的 8 位双向 I/O 口, P2 的输出缓冲级可驱动(吸收或输出电流) 4 个 TTL 逻辑门电路。 对端口 P2 写 “1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流 (IIL)。 在访问外部程序存储器或 16 位地址的外部数据存储器(例如执行 MOVX @DPTR 指令)时, P2 口送出高 8 位地址数据。 在访问 8 位地址的外部数据存储器(如执行 MOVX @RI 指令)时, P2 口输出 P2 锁存器的内容。 Flash 编程或校验时, P2 亦接收高位地址和一些控制信号。 P3 口 : P3 口是一组带有内部上拉电阻的 8 位双向 I/O 口。 P3 口输出缓冲级可驱动(吸收或输出电流) 4 个 TTL 逻辑门电路。 对 P3 口写入 “1”时,它们被内部上拉电阻拉高并 可作为输入端口。 此时,被外部拉低的 P3 口将用上拉电阻输出电流( IIL)。 P3 口除了作为一般的 I/O 口线外,更重要的用途是它的第二功能 P3 口还接收一些用于 Flash 闪速存储器编程和程序校验的控制信号。 RST:复位输入。 当振荡器工作时, RST 引脚出现两个机器周期以上高 电平将使单片机复位。 ALE/PROG:当访问外部程序存储器或数据存储器时, ALE(地址锁存允许)输出脉冲用于锁存地址的低 8 位字节。 一般情况下, ALE 仍以时钟振荡频率的 1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。 要注意的是:每当访问外部数据存储器时将跳过一个 ALE 脉冲。 对 Flash 存储器编程期间,该引脚还用于输入编程脉冲( PROG)。 如有必要,可通过对特殊功能寄存器( SFR)区中的 8EH 单元的 D0 位置位,可禁止 ALE 操作。 该位置位后,只有一条 MOVX 和 MOVC 指令才能将 ALE 激活。 此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置 ALE 禁止位无效。 PSEN:程序储存允许( PSEN)输出是外部程序存储器的读选通信号,当 AT89C52 由外部程序存储器取指令(或数据)时,每个机器周期两次 PSEN 有效,即输出两个脉冲。 在此期间,当访问外部数据存储器,将跳过两次 PSEN 信号。 EA/VPP:外部访问允许。 欲使 CPU 仅访问外部程序存储器(地址为 0000H—FFFFH),EA 端必须保持低电平(接地)。 需注意的是:如果加密位 LB1 被编程,复位时内部会锁存 EA 端状态。 4 4 矩阵式键盘 键盘电路是 用 AT89S52 的并行口 P3 接 4 4 矩阵键盘,以 - 作输入线,以- ; 数码管的 a,b,c,d,e,f,g 7个端端口接的是主芯片 AT89C52的 P2口从 到 ,在数码管上显示每个按键的“ 0- F”序号。 如 下 图 33 所示 : X T A L 218X T A L 119A L E30EA31P S E N29RS T9P 0 .0 /A D 039P 0 .1 /A D 138P 0 .2 /A D 237P 0 .3 /A D 336P 0 .4 /A D 435P 0 .5 /A D 534P 0 .6 /A D 633P 0 .7 /A D 732P 1 . 01P 1 . 12P 1 . 23P 1 . 34P 1 . 45P 1 . 56P 1 . 67P 1 . 78P 3 .0 /R X D10P 3 .1 /T X D11P 3 .2 /I NT 012P 3 .3 /I NT 113P 3 .4 /T 014P 3 .7 / R D17P 3 . 6 / W R16P 3 .5 /T 115P 2 .7 /A 1 528P 2 .0 / A 821P 2 .1 / A 922P 2 .2 /A 1 023P 2 .3 /A 1 124P 2 .4 /A 1 225P 2 .5 /A 1 326P 2 .6 /A 1 427U1A T 8 9 C5 10 1 2 34 5 6 78 9 A BC D E FR94 7 kR 1 04 7 kR 1 14 7 kR 1 24 7 kP 3 . 0P 3 . 1P 3 . 2P 3 . 3P 3 . 4P 3 . 5P 3 . 6P 3 . 7P 3 . 0P 3 . 1P 3 . 2P 3 . 3P 3 . 4P 3 . 5P 3 . 6P 3 . 7图 33键盘显示电路 1)接口说明 接口 控制 0 号 ,1 号 ,2 号 ,3 号开关; 接口 控制 4 号 ,5 号 ,6 号 ,7 号开关; 接口 控制 8 号 ,9 号 ,A 号 ,B 号开关; 接 口 控制开关 C, D, E, F; - 则为输出。 当按下 0 号开关时,数码管显示为‘ 0111111’; 当按下 1 号开关时,数码管显示为‘ 1111001’; 当按下 2 号开关时,数码管显示为‘ 0110111’; 当按下 3 号开关时,数码管显示为‘ 1001111’; 当按下 4 号开关时,数码管显示为‘ 1100110’; 当按下 5 号开关时,数码管显示为‘ 1101101’; 当按下 6 号开关时,数码管显示为‘ 1111101’; 当按下 7 号开关时,数码管显示为‘ 0000111’; 当按下 8 号开关时,数 码管显示为‘ 1111111’; 当按下 9 号开关时,数码管显示为‘ 1101111’; 当按下开关 A 时,数码管显示为‘ 1110111’; 当按下开关 B 时,数码管显示为‘ 1111100’; 当按下开关 C 时,数码管显示为‘ 0111001’; 当按下开关 D 时,数码管显示为‘ 1011110’; 当按下开关 E 时,数码管显示为‘ 1111001’; 当按下开关 F 时,数码管显示为‘ 1110001’; 2) 4 4 矩阵键盘 工作原理 矩阵键盘又称为行列式键盘,它是用 4 条 I/O 线作为行线, 4 条 I/O 线作为列线组成的键盘。 在行线和列 线的每一个交叉点上,设置一个按键。 这样键盘中按键的个数是 44 个。 这种行列式键盘结构能够有效地提高单片机系统中 I/O 口的利用率。 8 位发光二极管 以 AT89C52 为主芯片设计的一个 8 位发光二极管以流水灯的形式显示的基本电路 ,首先 ,8 个发光二极管的输入端是和 AT89C52 的 P1 口从 到 端 相接 ,形成 8 个输入端口 ,其次 ,在发光二极管和主芯片之间串联一个 1K 的电阻 ,是用来防止发光二极管在电压过大的情况下烧坏的 ,然后在发光二极管的另一端接的是高电平 VCC,这样就形成了 8个闭合 回路。 如 下 图 34 所 示 : 图 34 8位发光二极管电路 1)电路接法 8 位发光二极管一端接的是 Vcc,其次在另一端接的是 AT89CV52 的 P1 口,然后在二极管和 P1 之间串联一个电阻,如果 Vcc 为 5V,而流过二极管的电流为 3mA,设我用的二极管为硅管,所以我选用的电阻为 1K。 2) 8 位发光二极管原理: 因为二极管左边接的是 Vcc 作为高电平,所以如果要二极管亮的话 P1 口必须输入低电平,就一条通路而言,在 输入低电平后, D1 导通,所以 D1 就亮了,然后在后面X T A L 218X T A L 119A L E30EA31P S E N29RS T9P 0 .0 /A D 039P 0 .1 /A D 138P 0 .2 /A D 237P 0 .3 /A D 336P 0 .4 /A D 435P 0 .5 /A D 534P 0 .6 /A D 633P 0 .7 /A D 732P 1 .0 /T 21P 1 .1 /T 2 E X2P 1 . 23P 1 . 34P 1 . 45P 1 . 56P 1 . 67P 1 . 78P 3 .0 /R X D10P 3 .1 /T X D11P 3 .2 /I NT 012P 3 .3 /I NT 113P 3 .4 /T 014P 3 .7 / R D17P 3 . 6 / W R16P 3 .5 /T 115P 2 .7 /A 1 528P 2 .0 / A 821P 2 .1 / A 922P 2 .2 /A 1 023P 2 .3 /A 1 124P 2 .4 /A 1 225P 2 .5 /A 1 326P 2 .6 /A 1 4。基于proteus的单片机虚拟实验系统的设计
相关推荐
时序 和波形图,总结出其工作方式为四相单四拍时的脉冲分配规律,四相双四拍的脉 冲分配规律,在每一种工作方式中,脉冲的频率越高,其转速就越快,但脉冲频 率高到一定程度,步进电机跟不上频率的变化后电机会出现失步现象,所以脉冲 频率一定要控制在步进电机允许 的范围内。 ( 2) 89C51 单片机 Atmel公司生产的 89C51单片机是一种低功耗 /低电压‘高性能的 8位单片机, 它采用 CMOS
页 个重要的单片机开发平台 , 其界面友好 , 操作也不复杂 , 用户极为庞大。 Keil C 与 Proteus在各自的环境下都可以进行一定程度仿真调试。 然而 Keil C只能对程序进行调试 , 不能看到硬件的运行结果 , 因此并不直观 ; 而 Proteus软件在对单片机系统进行仿真调试的时候只能对硬件做出改动 , 不能直观的了解程序运行的情况 , 难以对程序中存在的不足和错误进行修改。
入。 当振荡器复位器件时,要保持 RST 脚两个机器周期的高电平时间。 ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。 在 FLASH 编程期间,此引脚用于输入编程脉冲。 在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的 1/6。 因 7 此它可用作对外部输出的脉冲或用于定时目的。 然而要注意的是:每当用作外部数据存储器时,将跳过一个
E 是全球主流 MCAD 系统,是计算机辅助设计、辅助制造、辅助工程和产品数据管理( CAD/CAM/CAE/PDM)一体化的软件系统之一。 自从 Pro/E 推出以来,在航空航天、汽车、通用机械工业设备、医疗器械以及其他高科技应用领域的机械设计和模具设计、加工等领域得到了广泛的应用。 基于 PROE软件的铣刀头设计德州职业技术学院毕业设计论文德州职业技术学 院毕业设计论文摘
2v = 100060 22nd =蜗杆导程角 =arctanqz1=arctan = 滑动速度 sV = sm/ 9 sV = sin2v = sm/ ( 2)计算啮合效率1 由表 613查的当量摩擦角 v = 39。 161 则啮合效率 1 = )tan(tanv = 1 = ( 3) 计算传动效率 由于轴承摩擦及搅油损耗功率不大,取22 =, 故传动效率
体、 行间距 要求及 章节序号编制如下所示: 1. (黑体四号字,段前 1行、 段后 1行 ) ( 黑体小四号字,段后 ) (内容省略) (宋 体小四号字, 首行缩进 2个 汉字 字符) (黑体小四号字,段前 、段后 ) (内容省略) (黑体小四号字) (内容省略) (内容省略) 2. (内容省略) (内容省略) 1 毕业论文(设计) 打印顺序依次为:①论文题目 ②系、专业、学号、作者姓名