高二数学由三视图还原成实物图内容摘要:
描述 . 正视图 侧视图 俯视图 正视图 侧视图 俯视图 六棱锥与六棱柱的组合体 举重杠铃 侧视图 正视图 俯视图 A B 变式训练一: 如图是一个物体的三视图,试说出物体 的形状。 正视图 侧视图 俯视图 一空间几何体的三视图如图所示 ,则该几何体是 ___ 2 2 2 2 2 侧视图 俯视图 正视图 2 例 2说出下面的三视图表示的几何体的结构特征,并画出其示意图 . 正视图 侧视图 俯视图 将一个长方体。高二数学由三视图还原成实物图
相关推荐
⊙ A和 ⊙ B内切 d=Rr 设 ⊙ A的半径为 R,⊙ B的半径为 r,圆心距为 d ⊙ A和 ⊙ B内含 dRr A B 设 ⊙ A的半径为 R,⊙ B的半径为 r,圆心距为 d 例 1 如图 , ⊙O 的半径为 5cm,点 P是 ⊙ O外的一点 ,OP=8cm. O P A 求 :(1)以 P为圆心作 ⊙ P与 ⊙ O外切 ,小圆 ⊙ P的半径是多少 ? 例 2 如图 , ⊙O 的半径为
若直线 3x+ 4y+ m= 0与圆 x2+ y2-2x+ 4y+ 4= 0没有公共点,则实数 m的取值范围是 ___________________. 变式 1- 2 (∞, 0)∪ (10, +∞) 解析:将圆 x2+ y2- 2x+ 4y+ 4= 0化为标准方程,得 (x- 1)2+ (y+ 2)2= 1,圆心为 (1,-2),半径为 1. 若直线与圆无公共点
3), B(3,0) ,过点P(- 1,2)的直线 l与线段 AB始终有公共点,则直线 l的斜率 k的取值范围是 ________. 解析:如图所示,直线 PA的斜率 k1= ,直线 PB的 斜率 k2= . 22 512 0 2 13 1 2 当直线 l由 PA变化到与 y轴平行的位置 PC 时,它的倾斜角由锐角 α(tan α= 5)增至
,则在 Rt △ B OA 中,| BO→|= | AB→| c o s ∠ ABO =| AB→|| BO→| c o s ∠ A B O| BO→|. 如果令平面 α 的法向量为 n ,考虑到法向量的方向,可以得到 B 点到平面 α 的距离为 | BO→| =| AB→ n || n |. 因此要求一个点到平面的距离,可分以下几步完成: ( 1 ) 求出该平面的一个法向量; ( 2 )
, ( 1 7 6 , 1 7 3 )共 10 个基本事件,而事件 A 含有 4 个基本事件:( 1 8 1 , 1 7 6 ) , ( 1 7 9 , 1 7 6 ) , ( 1 7 8 , 1 7 6 ) , ( 1 7 6 , 1 7 3 ) , ∴ P ( A ) =410=25. 探究提高 ( 1 ) 本题考查了茎叶图的识图问题和平均数的计算,其中从茎叶图中读出数据是关键,为此
P(B)不知道,怎么办。 频率估计概率 P(A) P(B) P(AB) • 同理,吸烟但不患病的人数约为 n • • 由此估计: 吸烟且患病的人数约为 n • • 不吸烟但患病的人数约为 n • • 不吸烟也不患病的人数约为 n • • 怎样估计 实际观测值与理论估计值的误差。 采用如下的量(称为 χ2 统计量)来刻画这个差异 : + + + 化简得 = 2 2统计量 2 =